当前位置: 首页 > news >正文

Java多线程(3)---锁策略、CAS和JUC

目录

前言

一.锁策略

1.1乐观锁和悲观锁

⭐ 两者的概念

⭐实现方法

1.2读写锁

 ⭐概念

⭐实现方法

1.3重量级锁和轻量级锁

1.4自旋锁和挂起等待锁

⭐概念

⭐代码实现

1.5公平锁和非公平锁

1.6可重入锁和不可重入锁

二.CAS

2.1为什么需要CAS

2.2CAS是什么

⭐CAS的介绍

⭐CAS工作原理

2.3CAS存在的问题        

2.4CAS的应用

⭐实现原子类        

⭐实现自旋锁

2.5CAS的缺点

三.JUC

 3.1ReentrantLock类

3.2Semaphore类

3.3CountDownLatch类


🎁个人主页:tq02的博客_CSDN博客-C语言,Java,Java数据结构领域博主
🎥 本文由 tq02 原创,首发于 CSDN🙉
🎄 本章讲解内容:线程的策略锁、CAS和JUC

🎥学习专栏:  C语言         JavaSE       MySQL基础    

前言

        在上章的 多线程二 中,我们学习到为了线程安全,我们需要进行加锁操作,锁这个概念不仅仅只存在于Java当中,锁也分很多种类。CAS在多线程二的讲解中稍微提及过,至于JUC则是指java.util.concurrent的常见类。

一.锁策略

        锁策略一共有10种,在面试的过程当中也是非常重要的,我们需要了解锁策略的每一种。

在面试当中,你的面试官是会询问你的哦,所以为了自己的大钱途,努力学习吧!!!

1.1乐观锁和悲观锁

⭐ 两者的概念

  • 悲观锁: 总是假设最坏的情况,每次去拿数据的时候都认为别人会修改,所以每次在拿数据的时候都会上锁,这样别人想拿这个数据就会阻塞直到它拿到锁。
  • 乐观锁:假设数据一般情况下不会产生并发冲突,所以在数据进行提交更新的时候,才会正式对数据是否产生并发冲突进行检测,如果发现并发冲突了,则让返回用户错误的信息,让用户决定如何去做。

抽象表达:

        悲观锁,就相当于学生向老师提问,但是学生认为老师不一定有空,因此先发个信息给老师,老师说有空,则立马去解答,如果没空(被其他线程加锁),则等待老师有空(解锁)。

        乐观锁,学生不认为老师很忙,直接去询问老师,结果2种,老师如果有空则会解答,没空就下次来询问。

实现方法

悲观锁:使用synchronized关键字来实现,正常的加锁行为。

乐观锁:添加一个版本号,通过在进行数据更新操作时,先读取数据并记录版本号,然后在更新数据时检查版本号是否一致。如果版本号一致,说明没有其他线程修改过数据,可以进行更新;如果版本号不一致,说明其他线程已经修改过数据,更新。

乐观锁Java代码实现:

public class Counter {private int count = 0;private int version = 0;    //版本号public void increment() {       while (true) {int currentVersion = version;if (compareAndSet(currentVersion)) {count++;break;}}}public int getCount() {return count;}public synchronized boolean compareAndSet(int expectVersion) {if (version == expectVersion) {version++;        //版本号相同时,执行一次操作+1return true;}return false;        //版本号不同,则返回false}}

compareAndSet方法实现了基于版本号的乐观锁。increment方法先读取当前的版本号,然后在一个while循环中不断尝试更新数据,如果compareAndSet方法返回true,则表示更新成功,否则需要继续重试。


结论:悲观锁通过加锁保护共享资源,保证线程安全。乐观锁则通过无锁编程的方式提高并发性能。开发人员需要根据实践场景选择适应的锁。

1.2读写锁

 ⭐概念

   多线程之间,数据的读取方之间不会产生线程安全问题,但数据的写入方互相之间以及和读者之间都需要进行互斥。如果两种场景下都用同一个锁,就会产生极大的性能损耗。所以读写锁因此而产生。

一个线程对于数据的访问, 主要存在两种操作: 读数据 和 写数据.

  • 两个线程都只是读一个数据, 此时并没有线程安全问题. 直接并发的读取即可.
  • 两个线程都要写一个数据, 有线程安全问题.
  • 一个线程读另外一个线程写, 也有线程安全问题

⭐实现方法

         读写锁将读操作和写操作区分对待,而为了实现读写锁,Java标准库提供了ReentrantReadWriteLock 类,在该类中又使用了2种类分别实现了读锁和写锁。

  • ReentrantReadWriteLock.ReadLock 类表示一个读锁. 这个对象提供了 lock / unlock 方法进行
    加锁解锁.
  • ReentrantReadWriteLock.WriteLock 类表示一个写锁. 这个对象也提供了 lock / unlock 方法进
    行加锁解锁.
     

ReentrantReadWriteLock.ReadLock 类代码实现:

import java.util.concurrent.locks.ReentrantReadWriteLock;public class ReadLockDemo {private static ReentrantReadWriteLock lock = new ReentrantReadWriteLock();private static ReentrantReadWriteLock.ReadLock readLock = lock.readLock();public static void main(String[] args) {new Thread(ReadLockDemo::read).start();new Thread(ReadLockDemo::read).start();}public static void read() {try {readLock.lock();    //加锁System.out.println(Thread.currentThread().getName() + "获取了读锁");// 执行读操作Thread.sleep(3000);} catch (InterruptedException e) {e.printStackTrace();} finally {readLock.unlock();    //解锁System.out.println(Thread.currentThread().getName() + "释放了读锁");}}
}

ReentrantReadWriteLock.WriteLock 类代码实现:

import java.util.concurrent.locks.ReentrantReadWriteLock;public class MyReadWriteLock {private ReentrantReadWriteLock lock = new ReentrantReadWriteLock();public void writeData() {ReentrantReadWriteLock.WriteLock writeLock = lock.writeLock();writeLock.lock();    //加锁try {// 从文件或数据库中写入数据System.out.println(Thread.currentThread().getName() + " is writing data...");Thread.sleep(1000);} catch (InterruptedException e) {e.printStackTrace();} finally {writeLock.unlock();    //解锁}}
}

结论读加锁和读加锁之间, 不互斥写加锁和写加锁之间, 互斥读加锁和写加锁之间, 互斥.

1.3重量级锁和轻量级锁

        所谓的重量和轻量,就是开销程度大和小。重量级锁:加锁的开销比较大(花的时间多、占用系统资源多).轻量级锁:加锁开销小(花的时间少、占用系统资源少)。

重量级锁:交给 OS 管理锁的争抢,释放 CPU 资源,ReentrantLock 类表示重量级锁

轻量级锁:JVM 自己管理锁的争抢(无锁,自旋锁),CPU资源不释放,实现基于CAS。

注:一个悲观锁可能是重量级锁、一个乐观锁可能是轻量锁

1.4自旋锁和挂起等待锁

⭐概念

        自旋锁是一种典型的 轻量级锁 的实现方式.
优点: 没有放弃 CPU, 不涉及线程阻塞和调度, 一旦锁被释放, 就能第一时间获取到锁.
缺点: 如果锁被其他线程持有的时间比较久, 那么就会持续的消耗 CPU 资源. 

        挂起等待锁是一种典型的 重量级锁 的实现方式

优点:避免线程的空轮询,确保在锁被释放后立即获取到锁,可以避免不必要的自旋浪费CPU资源。

缺点:增加了系统资源消耗和线程的等待时间。

⭐代码实现

自旋锁的代码实现:

import java.util.concurrent.atomic.AtomicReference;public class SpinLock {private AtomicReference<Thread> lock = new AtomicReference<>();public void lock() {Thread currentThread = Thread.currentThread();while (!lock.compareAndSet(null, currentThread)) {// 自旋等待}}public void unlock() {Thread currentThread = Thread.currentThread();lock.compareAndSet(currentThread, null);}
}

挂起等待锁代码实现:

public class WaitLockExample {private final Object lock = new Object();private boolean isLocked = false;public void foo() throws InterruptedException {synchronized(lock) {while(isLocked) {  //挂起等待中lock.wait();}// 执行线程的操作isLocked = true;}}public void bar() {synchronized(lock) {// 执行线程的操作isLocked = false;lock.notify();}}
}

1.5公平锁和非公平锁

        公平锁:遵循先来后到的原则,例如:线程A、B、C依次来,当A释放锁时,按顺序则下一个加锁的线程为B。

        非公平锁:不遵守先来后到的原则,例如:线程A、B、C依次来,当A释放锁时,结果下一个加锁的线程为C,而不是B

注:操作系统内部的线程调度就可以视为是随机的. 如果不做任何额外的限制, 锁就是非公平锁. 如果要想实现公平锁, 就需要依赖额外的数据结构, 来记录线程们的先后顺序.synchronized 是非公平锁.
 

1.6可重入锁和不可重入锁

        可重入锁:“可以重新进入的锁”,即允许同一个线程多次获取同一把锁。

情况:递归函数里有加锁操作,递归过程中这个锁会阻塞自己吗?不会,那么这个锁就是可重入锁而若是发生阻塞,那么自己阻塞自己,无法解锁,导致了死锁。 

Java中:以Reentrant开头命名的锁都是可重入锁,而且JDK提供的所有现成的Lock实现类,包括synchronized关键字锁都是可重入的。
      不可重入锁:只判断这个锁有没有被锁上,只要被锁上申请锁的线程都会被要求等待。实现简单


二.CAS

2.1为什么需要CAS

        多个线程同时访问锁,那么一些线程将被挂起,当线程恢复执行时,必须等待其它线程执行完他们的时间片以后才能被调度执行,在挂起和恢复执行过程中存在着很大的开销。锁还存在着其它一些缺点,当一个线程正在等待锁时,它不能做任何事。如果一个线程在持有锁的情况下被延迟执行,那么所有需要这个锁的线程都无法执行下去。如果被阻塞的线程优先级高,而持有锁的线程优先级低,将会导致优先级反转。
        CAS可以解决这一类弊端,鉴别线程冲突,一旦检测到冲突,就重复当前操作直到没有冲突为止。与锁相比,CAS会使得程序设计比较复杂,但是由于其天生免疫死锁(根本就没有锁,当然就不会有线程一直阻塞了),更为重要的是使用无锁的方式没有锁竞争带来的开销,也没有线程间频繁调度带来的开销,他比基于锁的方式有更优越的性能,所以在目前已经被广泛应用。
 

2.2CAS是什么

⭐CAS的介绍

        CAS机制全称compare and swap,翻译为比较并交换,是一种有名的无锁(lock-free)算法。只有一步原子操作,所以非常快。而且CAS避免了请求操作系统来裁定锁的问题,直接在CPU内部就完成了。

CAS工作伪代码:真实的 CAS 是一个原子的硬件指令完成的. 这个伪代码只是辅助理解

CAS是由CPU支持的原子操作,其原子性是在硬件层面进行保证的。 

注:一个线程的CAS先访问到内存,另一个后访问内存。


⭐CAS工作原理

CAS包含3个值:

  • 需要读写的内存位置(V)
  • 原来的值(A)
  • 期待更新的值(B)。

CAS操作逻辑如下:如果内存位置V的值等于预期的A值,则将该位置更新为新值B,否则不进行任何操作。许多CAS的操作是自旋的:如果操作不成功,会一直重试,直到操作成功为止。

2.3CAS存在的问题        

ABA问题                                                                                                                                          因为CAS会检查旧值有没有变化,因此存在一个问题。比如一个旧值A变为了成B,然后再变成A,刚好在做CAS时检查发现旧值并没有变化依然为A,但是实际上的确发生了变化解决方案:沿袭数据库中常用的乐观锁方式,添加一个版本号可以解决。原来的变化路径A->B->A就变成了1A->2B->3C。Java 1.5后的atomic包中提供了AtomicStampedReference来解决ABA问题,解决思路就是这样的。

自旋时间过长                                                                                                                                    使用CAS时非阻塞同步,也就是说不会将线程挂起,会自旋(无非就是一个死循环)进行下一次尝试,如果这里自旋时间过长对性能是很大的消耗。如果JVM能支持处理器提供的pause指令,那么在效率上会有一定的提升。

只能保证一个共享变量的原子操作                                                                                                 当对一个共享变量执行操作时CAS能保证其原子性,如果对多个共享变量进行操作,CAS就不能保证其原子性。

解决方案:利用对象整合多个共享变量,即一个类中的成员变量就是这几个共享变量。然后将这个对象做CAS操作就可以保证其原子性。atomic中提供了AtomicReference来保证引用对象之间的原子性。

2.4CAS的应用

⭐实现原子类        

Java标准库中提供了 java.util.concurrent.atomic 包, 里面的类都是基于这种方式来实现的.
        典型的就是 AtomicInteger 类. 其中的 getAndIncrement 相当于 i++ 操作

AtomicInteger atomicInteger = new AtomicInteger(0);atomicInteger.getAndIncrement(); // i++atomicInteger.incrementAndGet(); //++iatomicInteger.getAndDecrement(); //i--atomicInteger.decrementAndGet(); //--i

代码示例: 

private static AtomicInteger count = new AtomicInteger(0);public static void main(String[] args) throws InterruptedException {Thread t1 = new Thread(() -> {for (int i = 0; i < 50000; i++) {// count++count.getAndIncrement();             }});Thread t2 = new Thread(() -> {for (int i = 0; i < 50000; i++) {count.getAndIncrement();}});t1.start();t2.start();System.out.println(count.get());  //输出结果:100000}

如上述代码,此时就不会存在相加时,覆盖相同的值了,因此结果为100000.

⭐实现自旋锁

        基于 CAS 实现更灵活的锁, 获取到更多的控制权.

自旋锁的代码实现:

public class SpinLock {
private Thread owner = null;
public void lock(){// 通过 CAS 看当前锁是否被某个线程持有.// 如果这个锁已经被别的线程持有, 那么就自旋等待.// 如果这个锁没有被别的线程持有, 那么就把 owner 设为当前尝试加锁的线程.while(!CAS(this.owner, null, Thread.currentThread())){}}public void unlock (){this.owner = null;}
}

通过CAS判定出,当前变量的自增过程当中,是否有其他线程穿插进来了。

2.5CAS的缺点

  1. 一次性只能保证一个共享变量的原子性                                                                                   ​当对一个共享变量执行操作时,我们可以使用循环CAS的方式来保证原子操作,但是对多个共享量操作时,循环CAS就无法保证操作的原子性,这个时候就可以用锁来保证原子性。
  2. 循环会耗时                                                                                                                             我们可以看到getAndAddInt方法执行时,如果CAS失败,会一直进行尝试。如果CAS长时间一直不成功,可能会给CPU带来很大的开销。

​ 在并发冲突概率大的高竞争环境下,如果CAS一直失败,会一直重试,CPU开销较大。针对这个问题的一个思路是引入退出机制,如重试次数超过一定阈值后失败退出。当然,更重要的是避免在高竞争环境下使用乐观锁。

     3.存在ABA问题


三.JUC

        JUC工具包全名:java.util.concurrent,专门处理线程的工具包,从jdk1.5开始出现。

目的:为了更好的支持高并发任务。让开发者进行多线程编程时减少竞争条件和死锁的问题! 

而JUC中常见的类有:ReentrantLock :可重入锁;Semaphore :信号量;
                                   ountDownLatch :计数器;   CyclicBarrier :循环屏障。

 3.1ReentrantLock类

ReentrantLock类:可重入互斥锁. 和 synchronized 定位类似, 都是用来实现互斥效果, 保证线程安全.

// ReentrantLock 的构造方法
public ReentrantLock(boolean fair) {sync = fair ? new FairSync() : new NonfairSync();
}

用法:

  1. lock(): 加锁, 如果获取不到锁就死等;
  2. trylock(超时时间): 加锁, 如果获取不到锁, 等待一定的时间之后就放弃加锁;
  3. unlock(): 解锁。

与synchronize的区别:

  1. synchronized 是一个关键字, 是 JVM 内部实现的(大概率是基于 C++ 实现). ReentrantLock 是标准库的一个类, 在 JVM 外实现的(基于 Java 实现).
  2. synchronized 使用时不需要手动释放锁. ReentrantLock 使用时需要手动释放. 使用起来更灵活,但是也容易遗漏 unlock.
  3. synchronized 在申请锁失败时, 会死等. ReentrantLock 可以通过 trylock 的方式等待一段时间就
  4. 放弃.
  5. synchronized 是非公平锁, ReentrantLock 默认是非公平锁. 可以通过构造方法传入一个 true 开启公平锁模式

那么如何选择哪个锁呢?

  • 锁竞争不激烈的时候, 使用 synchronized, 效率更高, 自动释放更方便.
  • 锁竞争激烈的时候, 使用 ReentrantLock, 搭配 trylock 更灵活控制加锁的行为, 而不是死等.
  • 如果需要使用公平锁, 使用 ReentrantLock.
     

3.2Semaphore类

Semaphore类:信号量, 用来表示 “可用资源的个数”,本质上就是一个计数器。该类用于控制信号量的个数,构造时传入个数。总数就是控制并发的数量。

抽象解释:五双筷子,A拿了一双,则显示还有4双可用,A放回,则显示还有5双可用。若是5双筷子都被别人拿了,则禁止别人拿取筷子,等待别人放回。

import java.util.concurrent.Semaphore;public class SemaphoreTest {public static void main(String[] args) {// 创建Semaphore对象,设置许可数为3Semaphore semaphore = new Semaphore(3);// 创建10个线程for (int i = 1; i <= 10; i++) {MyThread thread = new MyThread(semaphore, i);new Thread(thread).start();}}static class MyThread implements Runnable {private Semaphore semaphore;private int threadNum;public MyThread(Semaphore semaphore, int threadNum) {this.semaphore = semaphore;this.threadNum = threadNum;}@Overridepublic void run() {try {// 获取许可,若还有许可数,则占用,若无则堵塞semaphore.acquire();System.out.println("线程" + threadNum + "获取到了许可");Thread.sleep(2000); // 模拟线程执行一段耗时的操作} catch (InterruptedException e) {e.printStackTrace();} finally {// 释放许可semaphore.release();System.out.println("线程" + threadNum + "释放了许可");}}}}

当一个线程调用 acquire() 方法时,计数器就会减一,当计数器为0时,它就会阻塞。当一个线程调用 release() 方法时,它将增加计数器的值,然后唤醒一个被阻塞的线程。

3.3CountDownLatch类

计数器:同时等待 N 个任务执行结束。例如田径比赛,只有所有人都通过终点,才能公布成绩。

public class CountDownLatchDemo {public static void main(String[] args) throws InterruptedException {// 创建计算器CountDownLatch countDownLatch = new CountDownLatch(5);// 创建线程池ExecutorService service = Executors.newFixedThreadPool(5);// 创建新线程执行任务for (int i = 1; i <= 5; i++) {service.submit(() -> {Thread currThread = Thread.currentThread();System.out.println(currThread.getName() + "开始起跑");int runTime = new Random().nextInt(5) + 1;try {TimeUnit.SECONDS.sleep(runTime);} catch (InterruptedException e) {e.printStackTrace();}System.out.println(currThread.getName() + "到达终点,用时:" + runTime);countDownLatch.countDown();  //在 CountDownLatch 内部的计数器同时自减.});}countDownLatch.await();  //阻塞等待所有任务执行完毕System.out.println("比赛结果宣布!");}
}

在代码当中,只有线程全部结束时,才能公布最后的结果


 

相关文章:

Java多线程(3)---锁策略、CAS和JUC

目录 前言 一.锁策略 1.1乐观锁和悲观锁 ⭐ 两者的概念 ⭐实现方法 1.2读写锁 ⭐概念 ⭐实现方法 1.3重量级锁和轻量级锁 1.4自旋锁和挂起等待锁 ⭐概念 ⭐代码实现 1.5公平锁和非公平锁 1.6可重入锁和不可重入锁 二.CAS 2.1为什么需要CAS 2.2CAS是什么 ⭐CAS…...

Linux:Shell编辑之文本处理器(awk)

目录 绪论 1、用法 1.1 格式选项 1.2 awk 常用内置变量 1.3 awk的打印功能 1.4 奇偶打印 1.5 awk运算 1.6 awk的内置函数&#xff1a;getline 1.7 文本过滤打印 1.8 awk条件判断打印 1.9 三元表达式&#xff0c;类似于java 1.10 awk的精确筛选 1.11 awk和tr比较改变…...

探索FSM (有限状态机)应用

有限状态机&#xff08;FSM&#xff09; 是计算机科学中的一种数学模型&#xff0c;可用于表示和控制系统的行为。它由一组状态以及定义在这些状态上的转换函数组成。FSM 被广泛用于计算机程序中的状态机制。 有限状态机&#xff08;FSM&#xff09;应用场景 在各种自动化系统…...

6.continue break

6.1continue 关键字 continue 关键字用于立即跳出本次循环&#xff0c;继续下一次循环&#xff08;本次循环体continue之后的代码会少执行一次&#xff09;。 例如&#xff1a;吃5个包子&#xff0c;第3个有虫子&#xff0c;就扔掉第3个包子&#xff0c;继续吃第4个第5个包子…...

如何在Linux中强制关闭卡住的PyCharm

在使用PyCharm进行Python开发时&#xff0c;有时可能会遇到卡顿或无响应的情况。当PyCharm卡住时&#xff0c;我们需要强制关闭它以恢复正常操作。今天&#xff0c;我们将介绍在Linux系统中如何强制关闭PyCharm的几种方法。 1. 使用键盘快捷键 在PyCharm所在的窗口中&#xf…...

c# Excel数据的导出与导入

搬运:Datagrideview 数据导出Excel , Exel数据导入 //------------------------------------------------------------------------------------- // All Rights Reserved , Copyright (C) 2013 , DZD , Ltd . //----------------------------------------------------------…...

Kotlin~Mediator中介者模式

概念 创建一个中介来降低对象之间的耦合度&#xff0c;关系”多对多“变为“一对多”。 角色介绍 Mediator&#xff1a;抽象中介者&#xff0c;接口或者抽象类。ConcreteMediator&#xff1a;中介者具体实现&#xff0c;实现中介者接口&#xff0c;定义一个List管理Colleagu…...

石子合并问题

一&#xff0e;试题 在一个园形操场的四周摆放N堆石子&#xff08;N≤100&#xff09;&#xff0c;现要将石子有次序地合并成一堆。规定 每次只能选相邻的两堆合并成新的一堆&#xff0c;并将新的一堆的石子数&#xff0c;记为该次合并的得分。 编一程序&#xff0c;由文件读入…...

剑指Offer-搜索与回溯算法

文章目录 剑指 Offer 32 - I. 从上到下打印二叉树题意&#xff1a;解&#xff1a;代码&#xff1a; 剑指 Offer 32 - II. 从上到下打印二叉树 II题意&#xff1a;解&#xff1a;代码&#xff1a; 剑指 Offer 32 - III. 从上到下打印二叉树 III题意&#xff1a;解&#xff1a;代…...

【云原生】Docker 详解(三):Docker 镜像管理基础

Docker 详解&#xff08;三&#xff09;&#xff1a;Docker 镜像管理基础 1.镜像的概念 镜像可以理解为应用程序的集装箱&#xff0c;而 Docker 用来装卸集装箱。 Docker 镜像含有启动容器所需要的文件系统及其内容&#xff0c;因此&#xff0c;其用于创建并启动容器。 Dock…...

SD-MTSP:蜘蛛蜂优化算法SWO求解单仓库多旅行商问题MATLAB(可更改数据集,旅行商的数量和起点)

一、蜘蛛蜂优化算法SWO 蜘蛛蜂优化算法&#xff08;Spider wasp optimizer&#xff0c;SWO&#xff09;由Mohamed Abdel-Basset等人于2023年提出&#xff0c;该算法模型雌性蜘蛛蜂的狩猎、筑巢和交配行为&#xff0c;具有搜索速度快&#xff0c;求解精度高的优势。蜘蛛蜂优化算…...

【ARM 嵌入式 编译系列 3.1 -- GCC __attribute__((used)) 使用】

文章目录 __attribute__((used)) 属性介绍代码演示编译与输出GCC 编译选项 上篇文章&#xff1a;ARM 嵌入式 编译系列 3 – GCC attribute((weak)) 弱符号使用 下篇文章&#xff1a;ARM 嵌入式 编译系列 3.2 – glibc 学习 __attribute__((used)) 属性介绍 在普通的 C/C 程序中…...

C++ ModBUS TCP客户端工具 qModMaster 介绍及使用

qModMaster工具介绍 QModMaster是一个基于Qt的Modbus主站&#xff08;Master&#xff09;模拟器&#xff0c;用于模拟和测试Modbus TCP和RTU通信。它提供了一个直观的图形界面&#xff0c;使用户能够轻松设置和发送Modbus请求&#xff0c;并查看和分析响应数据。 以下是QModM…...

笔记本电脑如何把sd卡数据恢复

在使用笔记本电脑过程中&#xff0c;如果不小心将SD卡里面的重要数据弄丢怎么办呢&#xff1f;别着急&#xff0c;本文将向您介绍SD卡数据丢失常见原因和恢复方法。 ▌一、SD卡数据丢失常见原因 - 意外删除&#xff1a;误操作或不小心将文件或文件夹删除。 - 误格式化&#…...

【2023 华数杯全国大学生数学建模竞赛】 B题 不透明制品最优配色方案设计 39页论文及python代码

【2023 华数杯全国大学生数学建模竞赛】 B题 不透明制品最优配色方案设计 39页论文及python代码 1 题目 B 题 不透明制品最优配色方案设计 日常生活中五彩缤纷的不透明有色制品是由着色剂染色而成。因此&#xff0c;不透明制品的配色对其外观美观度和市场竞争力起着重要作用。…...

Exams/ece241 2013 q4

蓄水池问题 S3 S2 S1 例如&#xff1a;000 代表 无水 &#xff0c;需要使FR3, FR2, FR1 都打开&#xff08;111&#xff09; S3 S2 S1 FR3 FR2 FR1 000 111 001 011 011 001 111 000 fr代表水变深为…...

Android OkHttp源码分析--分发器

OkHttp是当下Android使用最频繁的网络请求框架&#xff0c;由Square公司开源。Google在Android4.4以后开始将源码中 的HttpURLConnection底层实现替换为OKHttp&#xff0c;同时现在流行的Retrofit框架底层同样是使用OKHttp的。 OKHttp优点: 1、支持Http1、Http2、Quic以及Web…...

大数据面试题:说下Spark中的Transform和Action,为什么Spark要把操作分为Transform和Action?

面试题来源&#xff1a; 《大数据面试题 V4.0》 大数据面试题V3.0&#xff0c;523道题&#xff0c;679页&#xff0c;46w字 可回答&#xff1a;Spark常见的算子介绍一下 参考答案&#xff1a; 我们先来看下Spark算子的作用&#xff1a; 下图描述了Spark在运行转换中通过算…...

【图像去噪的扩散滤波】基于线性扩散滤波、边缘增强线性和非线性各向异性滤波的图像去噪研究(Matlab代码实现)

&#x1f4a5;&#x1f4a5;&#x1f49e;&#x1f49e;欢迎来到本博客❤️❤️&#x1f4a5;&#x1f4a5; &#x1f3c6;博主优势&#xff1a;&#x1f31e;&#x1f31e;&#x1f31e;博客内容尽量做到思维缜密&#xff0c;逻辑清晰&#xff0c;为了方便读者。 ⛳️座右铭&a…...

python函数、运算符等简单介绍2(无顺序)

list&#xff08;列表&#xff09; 列表是Python的一种内置数据类型&#xff0c;列表是可以装各种数据类 型的容器 # 第一种list创建方式 list_name [晓东,小刚,明明,小红,123,123.4,123] print(list_name) print(type(list_name)) # 输出结果&#xff1a; [晓东, 小刚, 明明…...

华为云AI开发平台ModelArts

华为云ModelArts&#xff1a;重塑AI开发流程的“智能引擎”与“创新加速器”&#xff01; 在人工智能浪潮席卷全球的2025年&#xff0c;企业拥抱AI的意愿空前高涨&#xff0c;但技术门槛高、流程复杂、资源投入巨大的现实&#xff0c;却让许多创新构想止步于实验室。数据科学家…...

论文解读:交大港大上海AI Lab开源论文 | 宇树机器人多姿态起立控制强化学习框架(二)

HoST框架核心实现方法详解 - 论文深度解读(第二部分) 《Learning Humanoid Standing-up Control across Diverse Postures》 系列文章: 论文深度解读 + 算法与代码分析(二) 作者机构: 上海AI Lab, 上海交通大学, 香港大学, 浙江大学, 香港中文大学 论文主题: 人形机器人…...

2025年能源电力系统与流体力学国际会议 (EPSFD 2025)

2025年能源电力系统与流体力学国际会议&#xff08;EPSFD 2025&#xff09;将于本年度在美丽的杭州盛大召开。作为全球能源、电力系统以及流体力学领域的顶级盛会&#xff0c;EPSFD 2025旨在为来自世界各地的科学家、工程师和研究人员提供一个展示最新研究成果、分享实践经验及…...

渗透实战PortSwigger靶场-XSS Lab 14:大多数标签和属性被阻止

<script>标签被拦截 我们需要把全部可用的 tag 和 event 进行暴力破解 XSS cheat sheet&#xff1a; https://portswigger.net/web-security/cross-site-scripting/cheat-sheet 通过爆破发现body可以用 再把全部 events 放进去爆破 这些 event 全部可用 <body onres…...

【大模型RAG】Docker 一键部署 Milvus 完整攻略

本文概要 Milvus 2.5 Stand-alone 版可通过 Docker 在几分钟内完成安装&#xff1b;只需暴露 19530&#xff08;gRPC&#xff09;与 9091&#xff08;HTTP/WebUI&#xff09;两个端口&#xff0c;即可让本地电脑通过 PyMilvus 或浏览器访问远程 Linux 服务器上的 Milvus。下面…...

DBAPI如何优雅的获取单条数据

API如何优雅的获取单条数据 案例一 对于查询类API&#xff0c;查询的是单条数据&#xff0c;比如根据主键ID查询用户信息&#xff0c;sql如下&#xff1a; select id, name, age from user where id #{id}API默认返回的数据格式是多条的&#xff0c;如下&#xff1a; {&qu…...

深入解析C++中的extern关键字:跨文件共享变量与函数的终极指南

&#x1f680; C extern 关键字深度解析&#xff1a;跨文件编程的终极指南 &#x1f4c5; 更新时间&#xff1a;2025年6月5日 &#x1f3f7;️ 标签&#xff1a;C | extern关键字 | 多文件编程 | 链接与声明 | 现代C 文章目录 前言&#x1f525;一、extern 是什么&#xff1f;&…...

高防服务器能够抵御哪些网络攻击呢?

高防服务器作为一种有着高度防御能力的服务器&#xff0c;可以帮助网站应对分布式拒绝服务攻击&#xff0c;有效识别和清理一些恶意的网络流量&#xff0c;为用户提供安全且稳定的网络环境&#xff0c;那么&#xff0c;高防服务器一般都可以抵御哪些网络攻击呢&#xff1f;下面…...

什么?连接服务器也能可视化显示界面?:基于X11 Forwarding + CentOS + MobaXterm实战指南

文章目录 什么是X11?环境准备实战步骤1️⃣ 服务器端配置(CentOS)2️⃣ 客户端配置(MobaXterm)3️⃣ 验证X11 Forwarding4️⃣ 运行自定义GUI程序(Python示例)5️⃣ 成功效果![在这里插入图片描述](https://i-blog.csdnimg.cn/direct/55aefaea8a9f477e86d065227851fe3d.pn…...

探索Selenium:自动化测试的神奇钥匙

目录 一、Selenium 是什么1.1 定义与概念1.2 发展历程1.3 功能概述 二、Selenium 工作原理剖析2.1 架构组成2.2 工作流程2.3 通信机制 三、Selenium 的优势3.1 跨浏览器与平台支持3.2 丰富的语言支持3.3 强大的社区支持 四、Selenium 的应用场景4.1 Web 应用自动化测试4.2 数据…...