6.2【人工智能与深度学习】RNN、GRU、远程服务管理、注意力、Seq2 搜索引擎和内存网络
【人工智能与深度学习】RNN、GRU、远程服务管理、注意力、Seq2 搜索引擎和内存网络底层原理介绍
- 深度学习架构
- 循环神经网络(RNN)
- 循环网络:摊开循环的网络的循环
- 循环神经网络的技巧
- 乘法模组
- 注意模组
- 门控循环单元(GRU)
- 长期短期记忆(Long Short-Term Memory,简称LSTM)
- 序列到序列模型
- 序列到序列加注意模型
- 记忆网络
深度学习架构
在深度学习中,有不同的模组来实现不同的功能。深度学习的专业知识包括设计架构以完成特定任务。这是有点像过去使用算法编写的程序对计算机来发出指令,深度学习将复杂的功能简化为一些图形模组&#x
相关文章:
6.2【人工智能与深度学习】RNN、GRU、远程服务管理、注意力、Seq2 搜索引擎和内存网络
【人工智能与深度学习】RNN、GRU、远程服务管理、注意力、Seq2 搜索引擎和内存网络底层原理介绍 深度学习架构循环神经网络(RNN)循环网络:摊开循环的网络的循环循环神经网络的技巧乘法模组注意模组门控循环单元(GRU)长期短期记忆(Long Short-Term Memory,简称LSTM)序列到序列…...

软件工程复习
软件工程简介 软件: -在执行时提供所需的功能和性能的指令; -使程序能够充分操作信息的数据结构; -描述这些程序的操作和使用情况的文档。 软件定义:计算机程序和相关文档。 软件特点:软件没有质量;它并不…...
将Nginx 核心知识点扒了个底朝天(二)
Nginx 是如何实现高并发的? 如果一个 server 采用一个进程(或者线程)负责一个request的方式,那么进程数就是并发数。那么显而易见的,就是会有很多进程在等待中。等什么?最多的应该是等待网络传输。 而 Nginx 的异步非阻塞工作方…...

【PowerQuery】PowerBI 的PowerQuery支持的数据集成
PowerBI中的各个Power组件已经被深度集成到PowerBI中,不再作为像Excel一样的独立组件而存在。在PowerBI的界面中为了快速导入这些常用的数据,也有相应的快速导入界面。PowerBI的快速导入界面位于主页面中,下图就是PowerBI的快速导入界面。 在PowerBI中的数据导入界面相比Exc…...
scipy spatial transform Rotation库的源代码
前几日研究scipy的旋转,不知道具体里面怎么实现的,因此搜索一番。 发现Rotation在scipy的表达是用四元数的 https://github.com/jgagneastro/coffeegrindsize/edit/master/App/dist/coffeegrindsize.app/Contents/Resources/lib/python3.7/scipy/spatia…...

JAVA文件操作
JAVA文件操作 文章目录JAVA文件操作1.属性2.构造方法3.方法3.1创建文件3.2 文件删除3.3创建目录3.4文件名3.5 文件重命名3.6查看文件的可读性 Java中通过 java.io.file类来对文件(目录)进行抽象的描述。注意, 有File对象时,不代表真实存在该文件。1.属…...

字符串匹配 - 模式预处理:BM 算法 (Boyer-Moore)
各种文本编辑器的"查找"功能(CtrlF),大多采用Boyer-Moore算法,效率非常高。算法简介在 1977 年,Robert S. Boyer (Stanford Research Institute) 和 J Strother Moore (Xerox Palo Alto Research Center) 共…...
RV1126笔记三十:freetype显示矢量字体
若该文为原创文章,转载请注明原文出处。 在前面介绍了使用取模软件,可以自定义OSD,这种做法相对不灵活,也无法变更,适用大部分场景。 如果使用opencv需要移植opencv,芯片资源相对要相比好,而且移植比freetype复杂。 这里记录下如何使用freetype显示矢量字体,使用fre…...
polkit pkexec 本地提权漏洞修复方案
polkit pkexec 本地提权漏洞 漏洞细节,polkit pkexec 中对命令行参数处理有误,导致参数注入,能够导致本地提权。 解决建议 1、无法升级软件修复包的,可使用以下命令删除pkexec的SUID-bit权限来规避漏洞风险: chmod 0…...
es-06聚合查询
聚合查询 概念 聚合(aggs)不同于普通查询,是目前学到的第二种大的查询分类,第一种即“query”,因此在代码中的第一层嵌套由“query”变为了“aggs”。用于进行聚合的字段必须是exact value,分词字段不可进行…...

面试知识点准备与总结——(并发篇)
目录线程有哪些状态线程池的核心参数sleep和wait的区别lock 与 synchronized 的异同volatile能否保证线程安全悲观锁和乐观锁的区别Hashtable 与 ConcurrentHashMap 的区别ConcurrentHashMap1.7和1.8的区别ThreadLocal的理解ThreadLocalMap中的key为何要设置为弱引用线程有哪些…...

Django框架之模型视图-URLconf
URLconf 浏览者通过在浏览器的地址栏中输入网址请求网站对于Django开发的网站,由哪一个视图进行处理请求,是由url匹配找到的 配置URLconf 1.settings.py中 指定url配置 ROOT_URLCONF 项目.urls2.项目中urls.py 匹配成功后,包含到应用的urls…...

操作系统闲谈06——进程管理
操作系统闲谈06——进程管理 一、进程调度 01 时间片轮转 给每一个进程分配一个时间片,然后时间片用完了,把cpu分配给另一个进程 时间片通常设置为 20ms ~ 50ms 02 先来先服务 就是维护了一个就绪队列,每次选择最先进入队列的进程&#…...

DaVinci 偏好设置:用户 - UI 设置
偏好设置 - 用户/ UI 设置Preferences - User/ UI Settings工作区选项Workspace Options语言Language指定 DaVinci Resolve 软件界面所使用的语言。目前支持英语、简体中文、日语、西班牙语、葡萄牙语、法语、俄语、泰语和越南语等等。启动时重新加载上一个工作项目Reload last…...

Nacos超简单-管理配置文件
优点理论什么的就不说了,按照流程开始配配置吧。登录Centos,启动Naocs,使用sh /data/soft/restart.sh将自动启动Nacos。访问:http://192.168.101.65:8848/nacos/账号密码:nacos/nacos分为两部分,第一部分准…...

基于微信小程序的中国各地美食推荐平台小程序
文末联系获取源码 开发语言:Java 框架:springboot JDK版本:JDK1.8 服务器:tomcat7 数据库:mysql 5.7/8.0 数据库工具:Navicat11 开发软件:eclipse/myeclipse/idea Maven包:Maven3.3.…...
如何优雅的导出函数
在开发过程中,经常会引用外部函数。方法主要有两种: 方法一:包含头文件并制定lib位置 优点:使用简单缺点:lib和vs版本有关,不同的版本和编译模式可能导致编译失败 方法二:GetProcAddress 优…...
c++多重继承
1.概论多重继承是否有必要吗?这个问题显然是一个哲学问题,正确的解答方式是根据情况来看,有时候需要,有时候不需要,这显然是一句废话,有点像上马克思主义哲学或者中庸思。但是这个问题和那些思想一样&#…...

15_FreeRtos计数信号量优先级翻转互斥信号量
目录 计数型信号量 计数型信号量相关API函数 计数型信号量实验源码 优先级翻转简介 优先级翻转实验源码 互斥信号量 互斥信号量相关API函数 互斥信号量实验源码 计数型信号量 计数型信号量相当于队列长度大于1的队列,因此计数型信号量能够容纳多个资源,这在…...

二叉树(一)
二叉树(一)1.树的概念2.树的相关概念3.树的表示4.树在实际中的运用5.二叉树概念及结构6.特殊的二叉树7.二叉树的性质🌟🌟hello,各位读者大大们你们好呀🌟🌟 🚀🚀系列专栏…...

Flask RESTful 示例
目录 1. 环境准备2. 安装依赖3. 修改main.py4. 运行应用5. API使用示例获取所有任务获取单个任务创建新任务更新任务删除任务 中文乱码问题: 下面创建一个简单的Flask RESTful API示例。首先,我们需要创建环境,安装必要的依赖,然后…...

C++初阶-list的底层
目录 1.std::list实现的所有代码 2.list的简单介绍 2.1实现list的类 2.2_list_iterator的实现 2.2.1_list_iterator实现的原因和好处 2.2.2_list_iterator实现 2.3_list_node的实现 2.3.1. 避免递归的模板依赖 2.3.2. 内存布局一致性 2.3.3. 类型安全的替代方案 2.3.…...

突破不可导策略的训练难题:零阶优化与强化学习的深度嵌合
强化学习(Reinforcement Learning, RL)是工业领域智能控制的重要方法。它的基本原理是将最优控制问题建模为马尔可夫决策过程,然后使用强化学习的Actor-Critic机制(中文译作“知行互动”机制),逐步迭代求解…...
DeepSeek 赋能智慧能源:微电网优化调度的智能革新路径
目录 一、智慧能源微电网优化调度概述1.1 智慧能源微电网概念1.2 优化调度的重要性1.3 目前面临的挑战 二、DeepSeek 技术探秘2.1 DeepSeek 技术原理2.2 DeepSeek 独特优势2.3 DeepSeek 在 AI 领域地位 三、DeepSeek 在微电网优化调度中的应用剖析3.1 数据处理与分析3.2 预测与…...

【WiFi帧结构】
文章目录 帧结构MAC头部管理帧 帧结构 Wi-Fi的帧分为三部分组成:MAC头部frame bodyFCS,其中MAC是固定格式的,frame body是可变长度。 MAC头部有frame control,duration,address1,address2,addre…...
系统设计 --- MongoDB亿级数据查询优化策略
系统设计 --- MongoDB亿级数据查询分表策略 背景Solution --- 分表 背景 使用audit log实现Audi Trail功能 Audit Trail范围: 六个月数据量: 每秒5-7条audi log,共计7千万 – 1亿条数据需要实现全文检索按照时间倒序因为license问题,不能使用ELK只能使用…...

微服务商城-商品微服务
数据表 CREATE TABLE product (id bigint(20) UNSIGNED NOT NULL AUTO_INCREMENT COMMENT 商品id,cateid smallint(6) UNSIGNED NOT NULL DEFAULT 0 COMMENT 类别Id,name varchar(100) NOT NULL DEFAULT COMMENT 商品名称,subtitle varchar(200) NOT NULL DEFAULT COMMENT 商…...

ElasticSearch搜索引擎之倒排索引及其底层算法
文章目录 一、搜索引擎1、什么是搜索引擎?2、搜索引擎的分类3、常用的搜索引擎4、搜索引擎的特点二、倒排索引1、简介2、为什么倒排索引不用B+树1.创建时间长,文件大。2.其次,树深,IO次数可怕。3.索引可能会失效。4.精准度差。三. 倒排索引四、算法1、Term Index的算法2、 …...

智能分布式爬虫的数据处理流水线优化:基于深度强化学习的数据质量控制
在数字化浪潮席卷全球的今天,数据已成为企业和研究机构的核心资产。智能分布式爬虫作为高效的数据采集工具,在大规模数据获取中发挥着关键作用。然而,传统的数据处理流水线在面对复杂多变的网络环境和海量异构数据时,常出现数据质…...
重启Eureka集群中的节点,对已经注册的服务有什么影响
先看答案,如果正确地操作,重启Eureka集群中的节点,对已经注册的服务影响非常小,甚至可以做到无感知。 但如果操作不当,可能会引发短暂的服务发现问题。 下面我们从Eureka的核心工作原理来详细分析这个问题。 Eureka的…...