当前位置: 首页 > news >正文

nlohmann json:检查object是否存在某个键

1.通过find进行检查

#include <iostream>
#include <nlohmann/json.hpp>
using namespace std;
using json = nlohmann::json;int main()
{json data = R"({"name": "xiaoming","age": 10, "parent":   [{"father" : "zhang","age" : 40},{"mother" : "wang","age" : 36}]})"_json;auto ifFind = data.find("name");if(ifFind != data.end()){cout<<"name="<<data["name"]<<endl;}else{cout<<"name not exist"<<endl;}ifFind = data.find("address");if(ifFind != data.end()){cout<<

相关文章:

nlohmann json:检查object是否存在某个键

1.通过find进行检查 #include <iostream> #include <nlohmann/json.hpp> using namespace std; using json = nlohmann::json;int main() {json data = R"({"name": "xiaoming","age": 10, "parent": [{"fat…...

15-1_Qt 5.9 C++开发指南_Qt多媒体模块概述

多媒体功能指的主要是计算机的音频和视频的输入、输出、显示和播放等功能&#xff0c;Qt 的多媒体模块为音频和视频播放、录音、摄像头拍照和录像等提供支持&#xff0c;甚至还提供数字收音机的支持。本章将介绍 Qt 多媒体模块的功能和使用。 文章目录 1. Qt 多媒体模块概述2. …...

分页查询中起始位置的计算

在分页查询中&#xff0c;page 和 pageSize 其实就是表示页数和每页的条数。这两个参数通常用于在数据库查询时进行分页。 如果你想根据 page 和 pageSize 计算数据的起始位置&#xff08;例如&#xff0c;MySQL数据库的LIMIT查询&#xff09;&#xff0c;可以使用以下公式&am…...

Failed to execute goal org.apache.maven.plugins

原因&#xff1a; 这个文件D:\java\maven\com\ruoyi\pg-student\maven-metadata-local.xml出了问题 解决&#xff1a; 最简单的直接删除D:\java\maven\com\ruoyi\pg-student\maven-metadata-local.xml重新打包 或者把D:\java\maven\com\ruoyi\pg-student这个目录下所有文件…...

50吨收费站生活一体化污水处理设备厂家价格低

50吨收费站生活一体化污水处理设备厂家价格低 设备工艺说明 污水处理设备主要用于生活污水和与之类似的工业有机废水的处理&#xff0c;其主要处理方法是采用目前较为成熟的生化处理技术—生物接触氧化&#xff0c;水质设计按一般生活污水水质设计计算&#xff0c;按BOD5平均20…...

UG NX二次开发(C#)-CAM-获取刀具类型

文章目录 1、前言2、UG NX中的刀具类型3、获取刀具类型3.1 刀具类型帮助文档1、前言 在UG NX的加工模块,加工刀具是一个必要的因素,其包括了多种类型的类型,有铣刀、钻刀、车刀、磨刀、成型刀等等,而且每种刀具所包含的信息也各不相同。想获取刀具的信息,那就要知道刀具的…...

Flask 框架集成Bootstrap

前面学习了 Flask 框架的基本用法&#xff0c;以及模板引擎 Jinja2&#xff0c;按理说可以开始自己的 Web 之旅了&#xff0c;不过在启程之前&#xff0c;还有个重要的武器需要了解一下&#xff0c;就是著名的 Bootstrap 框架和 Flask 的结合&#xff0c;这将大大提高开发 Web …...

在k8s 1.26.6上部署ES集群

一、k8s集群架构&#xff1a; IP 角色&#xff0c;左边是ip&#xff0c;右边是hostname master1 是192.168.1.3 的hostname 192.168.1.3 master1 192.168.1.4 master2 192.168.1.5 master3 192.168.1.6 node1 192.168.1.7 node2 二、部署ES集群 1、配置stor…...

用神经网络玩转数据聚类:自编码器的原理与实践

目录 引言一、什么是自编码器二、自编码器的应用场景三、自编码器的优缺点四、如何实现基于自编码器的聚类算法五、总结 引言 随着数据量的爆炸性增长&#xff0c;如何有效地处理和分析数据成为了一个重要的问题。数据聚类是一种常用的数据分析方法&#xff0c;它可以将数据集…...

Linux系统调试课:Linux Kernel Printk

🚀返回专栏总目录 文章目录 0、printk 说明1、printk 日志等级设置2、屏蔽等级日志控制机制3、printk打印常用方式4、printk打印格式0、printk 说明 在开发Linux device Driver或者跟踪调试内核行为的时候经常要通过Log API来trace整个过程,Kernel API printk()是整个Kern…...

不同版本Idea部署Maven和Tomcat教学

目录 一、2019版Idea 1.1. Maven配置 1.2. Tomcat配置 二、2023版Idea 2.1 Maven配置 2.2. Tomcat配置 一、2019版Idea 1.1. Maven配置 在这篇 http://t.csdn.cn/oetKq 我已经详细讲述了Maven的下载安装及配置&#xff0c;本篇就直接开始实操 : 1. 首先进入设置搜索Mave…...

Vue 3.0中的Treeshaking?

1.treeshaking是什么&#xff1f; Tree shaking 是一种通过清除多余代码方式来优化项目打包体积的技术&#xff0c;专业术语叫 Dead code elimination 简单来讲&#xff0c;就是在保持代码运行结果不变的前提下&#xff0c;去除无用的代码 如果把代码打包比作制作蛋糕&#…...

开源可商业运营的ChatGpt网页源码v1.2.2

&#x1f916; 主要功能 后台管理系统,可对用户,Token,商品,卡密等进行管理 精心设计的 UI&#xff0c;响应式设计 极快的首屏加载速度&#xff08;~100kb&#xff09; 支持Midjourney绘画和DALLE模型绘画,GPT4等应用 海量的内置 prompt 列表&#xff0c;来自中文和英文 一键导…...

驱动阿托斯DLHZO-T伺服比例阀放大器定制

DLHZO-T型伺服比例换向阀&#xff0c;直动式&#xff0c;带LVDT位置传感器和阀芯零遮盖&#xff0c;可应用于各种位置闭环控制实现最佳的性能。 比例阀和模块式数字放大器配合使用。 LVDT传感器和阀套结构可确保非常高的调节精度和响应灵敏度。 失电保护位可实现在电源中断的…...

SysML V1.2 Blocks

本人看的实在是太枯燥了&#xff0c;很多都是机翻过了一遍 后面复习的时候&#xff0c;我再用chatgpt润色一下 一、综述 块是系统描述的模块化单元。每个块定义了一组特征来描述系统或其他感兴趣的元素。这些可能包括结构和行为特征&#xff0c;例如属性和操作&#xff0c;以…...

反编译微信小程序,可导出uniapp或taro项目

微信小程序反编译&#xff08;全网通用&#xff09; 微信小程序反编译 反编译主要分为四个阶段 操作流程 1. node.js安装 2. node安装模块 3. 开始反编译 4. 导入到微信开发者工具既可运行 微信小程序反编译 当碰到不会写的小程序功能时&#xff0c;正好看到隔壁小程序有类似…...

鉴源实验室丨汽车网络安全攻击实例解析(二)

作者 | 田铮 上海控安可信软件创新研究院项目经理 来源 | 鉴源实验室 社群 | 添加微信号“TICPShanghai”加入“上海控安51fusa安全社区” 引言&#xff1a;汽车信息安全事件频发使得汽车行业安全态势愈发紧张。这些汽车网络安全攻击事件&#xff0c;轻则给企业产品发布及产品…...

pycorrector一键式文本纠错工具,整合了BERT、MacBERT、ELECTRA、ERNIE等多种模型,让您立即享受纠错的便利和效果

pycorrector&#xff1a;一键式文本纠错工具&#xff0c;整合了Kenlm、ConvSeq2Seq、BERT、MacBERT、ELECTRA、ERNIE、Transformer、T5等多种模型&#xff0c;让您立即享受纠错的便利和效果 pycorrector: 中文文本纠错工具。支持中文音似、形似、语法错误纠正&#xff0c;pytho…...

Linux 日志管理

Linux 日志管理 一.Linux 下的日志服务简介 1.1 CentOS5 之前的版本 centos5 之前的版本使用系统和内核日志分离的格式记录日志 syslogd:该服务专门用于记录系统日志(system application logs) klogd: 该服务专门用于记录内核日志(linux kernel logs) centos5 之前事件的记录格…...

统计学补充概念04-最大似然估计

概念 最大似然估计&#xff08;Maximum Likelihood Estimation&#xff0c;简称MLE&#xff09;是一种统计方法&#xff0c;用于估计模型的参数&#xff0c;使得给定观测数据的似然函数达到最大。在最大似然估计中&#xff0c;我们寻找能够最大化观测数据的可能性&#xff08;…...

条件运算符

C中的三目运算符&#xff08;也称条件运算符&#xff0c;英文&#xff1a;ternary operator&#xff09;是一种简洁的条件选择语句&#xff0c;语法如下&#xff1a; 条件表达式 ? 表达式1 : 表达式2• 如果“条件表达式”为true&#xff0c;则整个表达式的结果为“表达式1”…...

React Native在HarmonyOS 5.0阅读类应用开发中的实践

一、技术选型背景 随着HarmonyOS 5.0对Web兼容层的增强&#xff0c;React Native作为跨平台框架可通过重新编译ArkTS组件实现85%以上的代码复用率。阅读类应用具有UI复杂度低、数据流清晰的特点。 二、核心实现方案 1. 环境配置 &#xff08;1&#xff09;使用React Native…...

Qt Http Server模块功能及架构

Qt Http Server 是 Qt 6.0 中引入的一个新模块&#xff0c;它提供了一个轻量级的 HTTP 服务器实现&#xff0c;主要用于构建基于 HTTP 的应用程序和服务。 功能介绍&#xff1a; 主要功能 HTTP服务器功能&#xff1a; 支持 HTTP/1.1 协议 简单的请求/响应处理模型 支持 GET…...

IT供电系统绝缘监测及故障定位解决方案

随着新能源的快速发展&#xff0c;光伏电站、储能系统及充电设备已广泛应用于现代能源网络。在光伏领域&#xff0c;IT供电系统凭借其持续供电性好、安全性高等优势成为光伏首选&#xff0c;但在长期运行中&#xff0c;例如老化、潮湿、隐裂、机械损伤等问题会影响光伏板绝缘层…...

SpringTask-03.入门案例

一.入门案例 启动类&#xff1a; package com.sky;import lombok.extern.slf4j.Slf4j; import org.springframework.boot.SpringApplication; import org.springframework.boot.autoconfigure.SpringBootApplication; import org.springframework.cache.annotation.EnableCach…...

C# 求圆面积的程序(Program to find area of a circle)

给定半径r&#xff0c;求圆的面积。圆的面积应精确到小数点后5位。 例子&#xff1a; 输入&#xff1a;r 5 输出&#xff1a;78.53982 解释&#xff1a;由于面积 PI * r * r 3.14159265358979323846 * 5 * 5 78.53982&#xff0c;因为我们只保留小数点后 5 位数字。 输…...

算法笔记2

1.字符串拼接最好用StringBuilder&#xff0c;不用String 2.创建List<>类型的数组并创建内存 List arr[] new ArrayList[26]; Arrays.setAll(arr, i -> new ArrayList<>()); 3.去掉首尾空格...

比较数据迁移后MySQL数据库和OceanBase数据仓库中的表

设计一个MySQL数据库和OceanBase数据仓库的表数据比较的详细程序流程,两张表是相同的结构,都有整型主键id字段,需要每次从数据库分批取得2000条数据,用于比较,比较操作的同时可以再取2000条数据,等上一次比较完成之后,开始比较,直到比较完所有的数据。比较操作需要比较…...

如何应对敏捷转型中的团队阻力

应对敏捷转型中的团队阻力需要明确沟通敏捷转型目的、提升团队参与感、提供充分的培训与支持、逐步推进敏捷实践、建立清晰的奖励和反馈机制。其中&#xff0c;明确沟通敏捷转型目的尤为关键&#xff0c;团队成员只有清晰理解转型背后的原因和利益&#xff0c;才能降低对变化的…...

链式法则中 复合函数的推导路径 多变量“信息传递路径”

非常好&#xff0c;我们将之前关于偏导数链式法则中不能“约掉”偏导符号的问题&#xff0c;统一使用 二重复合函数&#xff1a; z f ( u ( x , y ) , v ( x , y ) ) \boxed{z f(u(x,y),\ v(x,y))} zf(u(x,y), v(x,y))​ 来全面说明。我们会展示其全微分形式&#xff08;偏导…...