时序预测 | MATLAB实现基于BiLSTM双向长短期记忆神经网络的时间序列预测-递归预测未来(多指标评价)
时序预测 | MATLAB实现基于BiLSTM双向长短期记忆神经网络的时间序列预测-递归预测未来(多指标评价)
目录
- 时序预测 | MATLAB实现基于BiLSTM双向长短期记忆神经网络的时间序列预测-递归预测未来(多指标评价)
- 预测结果
- 基本介绍
- 程序设计
- 参考资料
预测结果







基本介绍
Matlab实现BiLSTM双向长短期记忆神经网络时间序列预测未来(完整源码和数据)
Matlab实现BiLSTM双向长短期记忆神经网络时间序列预测未来(完整源码和数据)
1.Matlab实现BiLSTM双向长短期记忆神经网络时间序列预测未来;
2.运行环境Matlab2018及以上,data为数据集,单变量时间序列预测;
3.递归预测未来数据,可以控制预测未来大小的数目,适合循环性、周期性数据预测;
4.命令窗口输出R2、MAE、MAPE、MBE、MSE等评价指标;
程序设计
- 完整程序和数据获取方式1:私信博主回复MATLAB实现基于BiLSTM双向长短期记忆神经网络的时间序列预测-递归预测未来(多指标评价),同等价值程序兑换;
- 完整程序和数据下载方式2(资源处直接下载):MATLAB实现基于BiLSTM双向长短期记忆神经网络的时间序列预测-递归预测未来(多指标评价));
- 完整程序和数据下载方式3(订阅《LSTM长短期记忆神经网络》专栏,同时可阅读《LSTM长短期记忆神经网络》专栏内容,数据订阅后私信我获取):MATLAB实现基于BiLSTM双向长短期记忆神经网络的时间序列预测-递归预测未来(多指标评价)),专栏外只能获取该程序。
%% 创建混合网络架构
% 输入特征维度
numFeatures = f_;
% 输出特征维度
numResponses = 1;
FiltZise = 10;
% 创建模型layers = [...% 输入特征sequenceInputLayer([numFeatures 1 1],'Name','input')sequenceFoldingLayer('Name','fold')% 特征学习(50,'Name','lstm1','RecurrentWeightsInitializer','He','InputWeightsInitializer','He')(optVars.NumOfUnits,'OutputMode',"last",'Name','bil4','RecurrentWeightsInitializer','He','InputWeightsInitializer','He')dropoutLayer(0.25,'Name','drop3')% 全连接层fullyConnectedLayer(numResponses,'Name','fc')regressionLayer('Name','output') ];layers = layerGraph(layers);layers = connectLayers(layers,'fold/miniBatchSize','unfold/miniBatchSize');%% 训练选项
% 批处理样本
MiniBatchSize =128;
% 最大迭代次数
MaxEpochs = 500;options = trainingOptions( 'adam', ...'MaxEpochs',500, ...'GradientThreshold',1, ...'InitialLearnRate',optVars.InitialLearnRate, ...'LearnRateSchedule','piecewise', ...'LearnRateDropPeriod',400, ...'LearnRateDropFactor',0.2, ...'L2Regularization',optVars.L2Regularization,...'Verbose',false, ...'Plots','none');%% 训练混合网络
net = trainNetwork(XrTrain,YrTrain,layers,options);
参考资料
[1] https://blog.csdn.net/kjm13182345320/article/details/129036772?spm=1001.2014.3001.5502
[2] https://blog.csdn.net/kjm13182345320/article/details/128690229
相关文章:
时序预测 | MATLAB实现基于BiLSTM双向长短期记忆神经网络的时间序列预测-递归预测未来(多指标评价)
时序预测 | MATLAB实现基于BiLSTM双向长短期记忆神经网络的时间序列预测-递归预测未来(多指标评价) 目录 时序预测 | MATLAB实现基于BiLSTM双向长短期记忆神经网络的时间序列预测-递归预测未来(多指标评价)预测结果基本介绍程序设计参考资料 预测结果 基本介绍 Matlab实现BiLST…...
Flink多流处理之coGroup(协同分组)
这篇文章主要介绍协同分组coGroup的使用,先讲解API代码模板,后面会结图解介绍coGroup是如何将流中数据进行分组的. 1 API介绍 数据源# 左流数据 ➜ ~ nc -lk 6666 101,Tom 102,小明 103,小黑 104,张强 105,Ken 106,GG小日子 107,小花 108,赵宣艺 109,明亮# 右流数据 ➜ ~ n…...
基于TICK的DevOps监控实战(Ubuntu20.04系统,Telegraf+InfluDB+Chronograf+Kapacitor)
1、TICK简介 TICK是InfluxData开发的开源高性能时序中台,集成了采集、存储、分析、可视化等能力,由Telegraf, InfluDB, Chronograf, Kapacitor等4个组件以一种灵活松散、但又紧密配合,互为补充的方式构成。TICK专注于DevOps监控、IoT监控、实…...
十九、docker学习-Dockerfile
Dockerfile 官网地址 https://docs.docker.com/engine/reference/builder/Dockerfile其实就是我们用来构建Docker镜像的源码,当然这不是所谓的编程源码,而是一些命令的集合,只要理解它的逻辑和语法格式,就可以很容易的编写Docke…...
Docker容器的数据卷
1.数据卷的概念及作用 2.数据卷的配置 创建容器并挂载数据卷: docker run -it --namec1 -v /root/data:/root/data_container centos:7 /bin/bash按照容器挂载数据卷的原理,data_contianer这个目录下也会同步下来数据的更改。 3.一个容器挂载多个数据…...
推荐工具!使终端便于 DevOps 和 Kubernetes 使用
如果你熟悉 DevOps 和 Kubernetes 的使用,就会知道命令行界面(CLI)对于管理任务有多么重要。好在现在市面上有一些工具可以让终端在这些环境中更容易使用。在本文中,我们将探讨可以让工作流程简化的优秀工具,帮助你在 …...
抖音小程序实现less语言编译样式
1.在抖音开发工具中搜索扩展less 2. 然后点击小齿轮选择扩展设置 3. 然后在扩展设置中选择在settings.json中编辑# 4. 在settings.json中加入以下这段代码即可 // Easy LESS配置"less.compile": {"compress": false,//是否压缩"sourceMap": fal…...
介绍 TensorFlow 的基本概念和使用场景
TensorFlow 是一种开源的机器学习框架,由 Google 开发。它是用来构建和训练机器学习模型的强大工具,支持很多种不同类型的机器学习算法,并使用数据流图来表示计算过程。 TensorFlow 的核心是张量 (Tensor) 和计算图 (Graph)。 张量 (Tensor)…...
抖音关键词搜索小程序排名怎么做
抖音关键词搜索小程序排名怎么做 1 分钟教你制作一个抖音小程序。 抖音小程序就是我的视频,左下方这个蓝色的链接,点进去就是抖音小程序。 如果你有了这个小程序,发布视频的时候可以挂载这个小程序,直播的时候也可以挂载这个小…...
Windows下升级jdk1.8小版本
1.首先下载要升级jdk最新版本,下载地址:Java Downloads | Oracle 中国 2.下载完毕之后,直接双击下载完毕后的文件,进行安装。 3.安装完毕后,调整环境变量至新安装的jdk位置 4.此时,idea启动项目有可能会出…...
[保研/考研机试] KY235 进制转换2 清华大学复试上机题 C++实现
题目链接: KY235 进制转换2 https://www.nowcoder.com/questionTerminal/ae4b3c4a968745618d65b866002bbd32 描述 将M进制的数X转换为N进制的数输出。 输入描述: 输入的第一行包括两个整数:M和N(2<M,N<36)。 下面的一行输入一个数…...
机器学习 | Python实现KNN(K近邻)模型实践
机器学习 | Python实现KNN(K近邻)模型实践 目录 机器学习 | Python实现KNN(K近邻)模型实践基本介绍模型原理源码设计学习小结参考资料基本介绍 一句话就可以概括出KNN(K最近邻算法)的算法原理:综合k个“邻居”的标签值作为新样本的预测值。更具体来讲KNN分类过程,给定一个训…...
Mybatis 源码 ③ :SqlSession
一、前言 Mybatis 官网 以及 本系列文章地址: Mybatis 源码 ① :开篇Mybatis 源码 ② :流程分析Mybatis 源码 ③ :SqlSessionMybatis 源码 ④ :TypeHandlerMybatis 源码 ∞ :杂七杂八 在 Mybatis 源码 ②…...
Python 潮流周刊#15:如何分析异步任务的性能?
△点击上方“Python猫”关注 ,回复“1”领取电子书 你好,我是猫哥。这里每周分享优质的 Python、AI 及通用技术内容,大部分为英文。标题取自其中一则分享,不代表全部内容都是该主题,特此声明。 本周刊精心筛选国内外的…...
二叉搜索树K和KV结构模拟
一 什么是二叉搜索树 这个的结构特性非常重要,是后面函数实现的结构基础,二叉搜索树的特性是每个根节点都比自己的左树任一节点大,比自己的右树任一节点小。 例如这个图, 41是根节点,要比左树大,比右树小&…...
nlohmann json:检查object是否存在某个键
1.通过find进行检查 #include <iostream> #include <nlohmann/json.hpp> using namespace std; using json = nlohmann::json;int main() {json data = R"({"name": "xiaoming","age": 10, "parent": [{"fat…...
15-1_Qt 5.9 C++开发指南_Qt多媒体模块概述
多媒体功能指的主要是计算机的音频和视频的输入、输出、显示和播放等功能,Qt 的多媒体模块为音频和视频播放、录音、摄像头拍照和录像等提供支持,甚至还提供数字收音机的支持。本章将介绍 Qt 多媒体模块的功能和使用。 文章目录 1. Qt 多媒体模块概述2. …...
分页查询中起始位置的计算
在分页查询中,page 和 pageSize 其实就是表示页数和每页的条数。这两个参数通常用于在数据库查询时进行分页。 如果你想根据 page 和 pageSize 计算数据的起始位置(例如,MySQL数据库的LIMIT查询),可以使用以下公式&am…...
Failed to execute goal org.apache.maven.plugins
原因: 这个文件D:\java\maven\com\ruoyi\pg-student\maven-metadata-local.xml出了问题 解决: 最简单的直接删除D:\java\maven\com\ruoyi\pg-student\maven-metadata-local.xml重新打包 或者把D:\java\maven\com\ruoyi\pg-student这个目录下所有文件…...
50吨收费站生活一体化污水处理设备厂家价格低
50吨收费站生活一体化污水处理设备厂家价格低 设备工艺说明 污水处理设备主要用于生活污水和与之类似的工业有机废水的处理,其主要处理方法是采用目前较为成熟的生化处理技术—生物接触氧化,水质设计按一般生活污水水质设计计算,按BOD5平均20…...
第19节 Node.js Express 框架
Express 是一个为Node.js设计的web开发框架,它基于nodejs平台。 Express 简介 Express是一个简洁而灵活的node.js Web应用框架, 提供了一系列强大特性帮助你创建各种Web应用,和丰富的HTTP工具。 使用Express可以快速地搭建一个完整功能的网站。 Expre…...
条件运算符
C中的三目运算符(也称条件运算符,英文:ternary operator)是一种简洁的条件选择语句,语法如下: 条件表达式 ? 表达式1 : 表达式2• 如果“条件表达式”为true,则整个表达式的结果为“表达式1”…...
工程地质软件市场:发展现状、趋势与策略建议
一、引言 在工程建设领域,准确把握地质条件是确保项目顺利推进和安全运营的关键。工程地质软件作为处理、分析、模拟和展示工程地质数据的重要工具,正发挥着日益重要的作用。它凭借强大的数据处理能力、三维建模功能、空间分析工具和可视化展示手段&…...
Mac软件卸载指南,简单易懂!
刚和Adobe分手,它却总在Library里给你写"回忆录"?卸载的Final Cut Pro像电子幽灵般阴魂不散?总是会有残留文件,别慌!这份Mac软件卸载指南,将用最硬核的方式教你"数字分手术"࿰…...
自然语言处理——循环神经网络
自然语言处理——循环神经网络 循环神经网络应用到基于机器学习的自然语言处理任务序列到类别同步的序列到序列模式异步的序列到序列模式 参数学习和长程依赖问题基于门控的循环神经网络门控循环单元(GRU)长短期记忆神经网络(LSTM)…...
Webpack性能优化:构建速度与体积优化策略
一、构建速度优化 1、升级Webpack和Node.js 优化效果:Webpack 4比Webpack 3构建时间降低60%-98%。原因: V8引擎优化(for of替代forEach、Map/Set替代Object)。默认使用更快的md4哈希算法。AST直接从Loa…...
免费数学几何作图web平台
光锐软件免费数学工具,maths,数学制图,数学作图,几何作图,几何,AR开发,AR教育,增强现实,软件公司,XR,MR,VR,虚拟仿真,虚拟现实,混合现实,教育科技产品,职业模拟培训,高保真VR场景,结构互动课件,元宇宙http://xaglare.c…...
GO协程(Goroutine)问题总结
在使用Go语言来编写代码时,遇到的一些问题总结一下 [参考文档]:https://www.topgoer.com/%E5%B9%B6%E5%8F%91%E7%BC%96%E7%A8%8B/goroutine.html 1. main()函数默认的Goroutine 场景再现: 今天在看到这个教程的时候,在自己的电…...
根目录0xa0属性对应的Ntfs!_SCB中的FileObject是什么时候被建立的----NTFS源代码分析--重要
根目录0xa0属性对应的Ntfs!_SCB中的FileObject是什么时候被建立的 第一部分: 0: kd> g Breakpoint 9 hit Ntfs!ReadIndexBuffer: f7173886 55 push ebp 0: kd> kc # 00 Ntfs!ReadIndexBuffer 01 Ntfs!FindFirstIndexEntry 02 Ntfs!NtfsUpda…...
深度学习之模型压缩三驾马车:模型剪枝、模型量化、知识蒸馏
一、引言 在深度学习中,我们训练出的神经网络往往非常庞大(比如像 ResNet、YOLOv8、Vision Transformer),虽然精度很高,但“太重”了,运行起来很慢,占用内存大,不适合部署到手机、摄…...
