当前位置: 首页 > news >正文

时序预测 | MATLAB实现基于BiLSTM双向长短期记忆神经网络的时间序列预测-递归预测未来(多指标评价)

时序预测 | MATLAB实现基于BiLSTM双向长短期记忆神经网络的时间序列预测-递归预测未来(多指标评价)

目录

    • 时序预测 | MATLAB实现基于BiLSTM双向长短期记忆神经网络的时间序列预测-递归预测未来(多指标评价)
      • 预测结果
      • 基本介绍
      • 程序设计
      • 参考资料

预测结果

在这里插入图片描述

在这里插入图片描述

在这里插入图片描述

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

基本介绍

Matlab实现BiLSTM双向长短期记忆神经网络时间序列预测未来(完整源码和数据)
Matlab实现BiLSTM双向长短期记忆神经网络时间序列预测未来(完整源码和数据)
1.Matlab实现BiLSTM双向长短期记忆神经网络时间序列预测未来;
2.运行环境Matlab2018及以上,data为数据集,单变量时间序列预测;
3.递归预测未来数据,可以控制预测未来大小的数目,适合循环性、周期性数据预测;
4.命令窗口输出R2、MAE、MAPE、MBE、MSE等评价指标;

程序设计

  • 完整程序和数据获取方式1:私信博主回复MATLAB实现基于BiLSTM双向长短期记忆神经网络的时间序列预测-递归预测未来(多指标评价),同等价值程序兑换;
  • 完整程序和数据下载方式2(资源处直接下载):MATLAB实现基于BiLSTM双向长短期记忆神经网络的时间序列预测-递归预测未来(多指标评价));
  • 完整程序和数据下载方式3(订阅《LSTM长短期记忆神经网络》专栏,同时可阅读《LSTM长短期记忆神经网络》专栏内容,数据订阅后私信我获取):MATLAB实现基于BiLSTM双向长短期记忆神经网络的时间序列预测-递归预测未来(多指标评价)),专栏外只能获取该程序
%% 创建混合网络架构
% 输入特征维度
numFeatures  = f_;
% 输出特征维度
numResponses = 1;
FiltZise = 10;
%  创建模型layers = [...% 输入特征sequenceInputLayer([numFeatures 1 1],'Name','input')sequenceFoldingLayer('Name','fold')% 特征学习(50,'Name','lstm1','RecurrentWeightsInitializer','He','InputWeightsInitializer','He')(optVars.NumOfUnits,'OutputMode',"last",'Name','bil4','RecurrentWeightsInitializer','He','InputWeightsInitializer','He')dropoutLayer(0.25,'Name','drop3')% 全连接层fullyConnectedLayer(numResponses,'Name','fc')regressionLayer('Name','output')    ];layers = layerGraph(layers);layers = connectLayers(layers,'fold/miniBatchSize','unfold/miniBatchSize');%% 训练选项
% 批处理样本
MiniBatchSize =128;
% 最大迭代次数
MaxEpochs = 500;options = trainingOptions( 'adam', ...'MaxEpochs',500, ...'GradientThreshold',1, ...'InitialLearnRate',optVars.InitialLearnRate, ...'LearnRateSchedule','piecewise', ...'LearnRateDropPeriod',400, ...'LearnRateDropFactor',0.2, ...'L2Regularization',optVars.L2Regularization,...'Verbose',false, ...'Plots','none');%% 训练混合网络
net = trainNetwork(XrTrain,YrTrain,layers,options);

参考资料

[1] https://blog.csdn.net/kjm13182345320/article/details/129036772?spm=1001.2014.3001.5502
[2] https://blog.csdn.net/kjm13182345320/article/details/128690229

相关文章:

时序预测 | MATLAB实现基于BiLSTM双向长短期记忆神经网络的时间序列预测-递归预测未来(多指标评价)

时序预测 | MATLAB实现基于BiLSTM双向长短期记忆神经网络的时间序列预测-递归预测未来(多指标评价) 目录 时序预测 | MATLAB实现基于BiLSTM双向长短期记忆神经网络的时间序列预测-递归预测未来(多指标评价)预测结果基本介绍程序设计参考资料 预测结果 基本介绍 Matlab实现BiLST…...

Flink多流处理之coGroup(协同分组)

这篇文章主要介绍协同分组coGroup的使用,先讲解API代码模板,后面会结图解介绍coGroup是如何将流中数据进行分组的. 1 API介绍 数据源# 左流数据 ➜ ~ nc -lk 6666 101,Tom 102,小明 103,小黑 104,张强 105,Ken 106,GG小日子 107,小花 108,赵宣艺 109,明亮# 右流数据 ➜ ~ n…...

基于TICK的DevOps监控实战(Ubuntu20.04系统,Telegraf+InfluDB+Chronograf+Kapacitor)

1、TICK简介 TICK是InfluxData开发的开源高性能时序中台,集成了采集、存储、分析、可视化等能力,由Telegraf, InfluDB, Chronograf, Kapacitor等4个组件以一种灵活松散、但又紧密配合,互为补充的方式构成。TICK专注于DevOps监控、IoT监控、实…...

十九、docker学习-Dockerfile

Dockerfile 官网地址 https://docs.docker.com/engine/reference/builder/Dockerfile其实就是我们用来构建Docker镜像的源码,当然这不是所谓的编程源码,而是一些命令的集合,只要理解它的逻辑和语法格式,就可以很容易的编写Docke…...

Docker容器的数据卷

1.数据卷的概念及作用 2.数据卷的配置 创建容器并挂载数据卷: docker run -it --namec1 -v /root/data:/root/data_container centos:7 /bin/bash按照容器挂载数据卷的原理,data_contianer这个目录下也会同步下来数据的更改。 3.一个容器挂载多个数据…...

推荐工具!使终端便于 DevOps 和 Kubernetes 使用

如果你熟悉 DevOps 和 Kubernetes 的使用,就会知道命令行界面(CLI)对于管理任务有多么重要。好在现在市面上有一些工具可以让终端在这些环境中更容易使用。在本文中,我们将探讨可以让工作流程简化的优秀工具,帮助你在 …...

抖音小程序实现less语言编译样式

1.在抖音开发工具中搜索扩展less 2. 然后点击小齿轮选择扩展设置 3. 然后在扩展设置中选择在settings.json中编辑# 4. 在settings.json中加入以下这段代码即可 // Easy LESS配置"less.compile": {"compress": false,//是否压缩"sourceMap": fal…...

介绍 TensorFlow 的基本概念和使用场景

TensorFlow 是一种开源的机器学习框架,由 Google 开发。它是用来构建和训练机器学习模型的强大工具,支持很多种不同类型的机器学习算法,并使用数据流图来表示计算过程。 TensorFlow 的核心是张量 (Tensor) 和计算图 (Graph)。 张量 (Tensor)…...

抖音关键词搜索小程序排名怎么做

抖音关键词搜索小程序排名怎么做 1 分钟教你制作一个抖音小程序。 抖音小程序就是我的视频,左下方这个蓝色的链接,点进去就是抖音小程序。 如果你有了这个小程序,发布视频的时候可以挂载这个小程序,直播的时候也可以挂载这个小…...

Windows下升级jdk1.8小版本

1.首先下载要升级jdk最新版本,下载地址:Java Downloads | Oracle 中国 2.下载完毕之后,直接双击下载完毕后的文件,进行安装。 3.安装完毕后,调整环境变量至新安装的jdk位置 4.此时,idea启动项目有可能会出…...

[保研/考研机试] KY235 进制转换2 清华大学复试上机题 C++实现

题目链接&#xff1a; KY235 进制转换2 https://www.nowcoder.com/questionTerminal/ae4b3c4a968745618d65b866002bbd32 描述 将M进制的数X转换为N进制的数输出。 输入描述&#xff1a; 输入的第一行包括两个整数&#xff1a;M和N(2<M,N<36)。 下面的一行输入一个数…...

机器学习 | Python实现KNN(K近邻)模型实践

机器学习 | Python实现KNN(K近邻)模型实践 目录 机器学习 | Python实现KNN(K近邻)模型实践基本介绍模型原理源码设计学习小结参考资料基本介绍 一句话就可以概括出KNN(K最近邻算法)的算法原理:综合k个“邻居”的标签值作为新样本的预测值。更具体来讲KNN分类过程,给定一个训…...

Mybatis 源码 ③ :SqlSession

一、前言 Mybatis 官网 以及 本系列文章地址&#xff1a; Mybatis 源码 ① &#xff1a;开篇Mybatis 源码 ② &#xff1a;流程分析Mybatis 源码 ③ &#xff1a;SqlSessionMybatis 源码 ④ &#xff1a;TypeHandlerMybatis 源码 ∞ &#xff1a;杂七杂八 在 Mybatis 源码 ②…...

Python 潮流周刊#15:如何分析异步任务的性能?

△点击上方“Python猫”关注 &#xff0c;回复“1”领取电子书 你好&#xff0c;我是猫哥。这里每周分享优质的 Python、AI 及通用技术内容&#xff0c;大部分为英文。标题取自其中一则分享&#xff0c;不代表全部内容都是该主题&#xff0c;特此声明。 本周刊精心筛选国内外的…...

二叉搜索树K和KV结构模拟

一 什么是二叉搜索树 这个的结构特性非常重要&#xff0c;是后面函数实现的结构基础&#xff0c;二叉搜索树的特性是每个根节点都比自己的左树任一节点大&#xff0c;比自己的右树任一节点小。 例如这个图&#xff0c; 41是根节点&#xff0c;要比左树大&#xff0c;比右树小&…...

nlohmann json:检查object是否存在某个键

1.通过find进行检查 #include <iostream> #include <nlohmann/json.hpp> using namespace std; using json = nlohmann::json;int main() {json data = R"({"name": "xiaoming","age": 10, "parent": [{"fat…...

15-1_Qt 5.9 C++开发指南_Qt多媒体模块概述

多媒体功能指的主要是计算机的音频和视频的输入、输出、显示和播放等功能&#xff0c;Qt 的多媒体模块为音频和视频播放、录音、摄像头拍照和录像等提供支持&#xff0c;甚至还提供数字收音机的支持。本章将介绍 Qt 多媒体模块的功能和使用。 文章目录 1. Qt 多媒体模块概述2. …...

分页查询中起始位置的计算

在分页查询中&#xff0c;page 和 pageSize 其实就是表示页数和每页的条数。这两个参数通常用于在数据库查询时进行分页。 如果你想根据 page 和 pageSize 计算数据的起始位置&#xff08;例如&#xff0c;MySQL数据库的LIMIT查询&#xff09;&#xff0c;可以使用以下公式&am…...

Failed to execute goal org.apache.maven.plugins

原因&#xff1a; 这个文件D:\java\maven\com\ruoyi\pg-student\maven-metadata-local.xml出了问题 解决&#xff1a; 最简单的直接删除D:\java\maven\com\ruoyi\pg-student\maven-metadata-local.xml重新打包 或者把D:\java\maven\com\ruoyi\pg-student这个目录下所有文件…...

50吨收费站生活一体化污水处理设备厂家价格低

50吨收费站生活一体化污水处理设备厂家价格低 设备工艺说明 污水处理设备主要用于生活污水和与之类似的工业有机废水的处理&#xff0c;其主要处理方法是采用目前较为成熟的生化处理技术—生物接触氧化&#xff0c;水质设计按一般生活污水水质设计计算&#xff0c;按BOD5平均20…...

Vue记事本应用实现教程

文章目录 1. 项目介绍2. 开发环境准备3. 设计应用界面4. 创建Vue实例和数据模型5. 实现记事本功能5.1 添加新记事项5.2 删除记事项5.3 清空所有记事 6. 添加样式7. 功能扩展&#xff1a;显示创建时间8. 功能扩展&#xff1a;记事项搜索9. 完整代码10. Vue知识点解析10.1 数据绑…...

Flask RESTful 示例

目录 1. 环境准备2. 安装依赖3. 修改main.py4. 运行应用5. API使用示例获取所有任务获取单个任务创建新任务更新任务删除任务 中文乱码问题&#xff1a; 下面创建一个简单的Flask RESTful API示例。首先&#xff0c;我们需要创建环境&#xff0c;安装必要的依赖&#xff0c;然后…...

逻辑回归:给不确定性划界的分类大师

想象你是一名医生。面对患者的检查报告&#xff08;肿瘤大小、血液指标&#xff09;&#xff0c;你需要做出一个**决定性判断**&#xff1a;恶性还是良性&#xff1f;这种“非黑即白”的抉择&#xff0c;正是**逻辑回归&#xff08;Logistic Regression&#xff09;** 的战场&a…...

如何在看板中体现优先级变化

在看板中有效体现优先级变化的关键措施包括&#xff1a;采用颜色或标签标识优先级、设置任务排序规则、使用独立的优先级列或泳道、结合自动化规则同步优先级变化、建立定期的优先级审查流程。其中&#xff0c;设置任务排序规则尤其重要&#xff0c;因为它让看板视觉上直观地体…...

python如何将word的doc另存为docx

将 DOCX 文件另存为 DOCX 格式&#xff08;Python 实现&#xff09; 在 Python 中&#xff0c;你可以使用 python-docx 库来操作 Word 文档。不过需要注意的是&#xff0c;.doc 是旧的 Word 格式&#xff0c;而 .docx 是新的基于 XML 的格式。python-docx 只能处理 .docx 格式…...

JDK 17 新特性

#JDK 17 新特性 /**************** 文本块 *****************/ python/scala中早就支持&#xff0c;不稀奇 String json “”" { “name”: “Java”, “version”: 17 } “”"; /**************** Switch 语句 -> 表达式 *****************/ 挺好的&#xff…...

使用Matplotlib创建炫酷的3D散点图:数据可视化的新维度

文章目录 基础实现代码代码解析进阶技巧1. 自定义点的大小和颜色2. 添加图例和样式美化3. 真实数据应用示例实用技巧与注意事项完整示例(带样式)应用场景在数据科学和可视化领域,三维图形能为我们提供更丰富的数据洞察。本文将手把手教你如何使用Python的Matplotlib库创建引…...

七、数据库的完整性

七、数据库的完整性 主要内容 7.1 数据库的完整性概述 7.2 实体完整性 7.3 参照完整性 7.4 用户定义的完整性 7.5 触发器 7.6 SQL Server中数据库完整性的实现 7.7 小结 7.1 数据库的完整性概述 数据库完整性的含义 正确性 指数据的合法性 有效性 指数据是否属于所定…...

人工智能(大型语言模型 LLMs)对不同学科的影响以及由此产生的新学习方式

今天是关于AI如何在教学中增强学生的学习体验&#xff0c;我把重要信息标红了。人文学科的价值被低估了 ⬇️ 转型与必要性 人工智能正在深刻地改变教育&#xff0c;这并非炒作&#xff0c;而是已经发生的巨大变革。教育机构和教育者不能忽视它&#xff0c;试图简单地禁止学生使…...

搭建DNS域名解析服务器(正向解析资源文件)

正向解析资源文件 1&#xff09;准备工作 服务端及客户端都关闭安全软件 [rootlocalhost ~]# systemctl stop firewalld [rootlocalhost ~]# setenforce 0 2&#xff09;服务端安装软件&#xff1a;bind 1.配置yum源 [rootlocalhost ~]# cat /etc/yum.repos.d/base.repo [Base…...