Redis面试题:1~2亿条数据需要缓存,请问如何设计这个存储案例
目录
前言
一、哈希取余分区
优点
缺点
二、一致性哈希算法分区
背景
步骤
① 算法构建一致性哈希环
② 服务器IP节点映射
③ key落到服务器的落键规则
优点
① 容错性
② 扩展性
缺点
三、哈希槽分区
前言
单机单台100%不可能,肯定是分布式存储,但是用redis如何落地? 一般业界有3种解决方案
一、哈希取余分区
2亿条记录就是2亿个k,v,我们单机不行必须要分布式多机,假设有3台机器构成一个集群,用户每次读写操作都是根据公式:hash(key) % N个机器台数,计算出哈希值,用来决定数据映射到哪一个节点上。
优点
简单粗暴,直接有效,只需要预估好数据规划好节点,例如3台、8台、10台,就能保证一段时间的数据支撑。使用Hash算法让固定的一部分请求落到同一台服务器上,这样每台服务器固定处理一部分请求(并维护这些请求的信息),起到负载均衡+分而治之的作用。
缺点
原来规划好的节点,进行扩容或者缩容就比较麻烦了,不管扩缩,每次数据变动导致节点有变动,映射关系需要重新进行计算,在服务器个数固定不变时没有问题,如果需要弹性扩容或故障停机的情况下,原来的取模公式就会发生变化:Hash(key)/3会变成Hash(key) /?。此时地址经过取余运算的结果将发生很大变化,根据公式获取的服务器也会变得不可控。
即某个redis机器宕机了,由于台数数量变化,会导致hash取余全部数据重新洗牌。
二、一致性哈希算法分区
背景
一致性哈希算法在1997年由麻省理工学院中提出的,设计目标是为了解决分布式缓存数据变动和映射问题,某个机器宕机了,分母数量改变了,自然取余数不OK了。
步骤
① 算法构建一致性哈希环
一致性哈希算法必然有个hash函数并按照算法产生hash值,这个算法的所有可能哈希值会构成一个全量集,这个集合可以成为一个hash空间[0,2^32-1],这个是一个线性空间,但是在算法中,我们通过适当的逻辑控制将它首尾相连(0 = 2^32),这样让它逻辑上形成了一个环形空间。
它也是按照使用取模的方法,前面介绍的节点取模法是对节点(服务器)的数量进行取模。而一致性Hash算法是对2^32取模,简单来说,一致性Hash算法将整个哈希值空间组织成一个虚拟的圆环,如假设某哈希函数H的值空间为0-2^32-1(即哈希值是一个32位无符号整形),整个哈希环如下图:整个空间按顺时针方向组织,圆环的正上方的点代表0,0点右侧的第一个点代表1,以此类推,2、3、4、……直到2^32-1,也就是说0点左侧的第一个点代表2^32-1, 0和2^32-1在零点中方向重合,我们把这个由2^32个点组成的圆环称为Hash环。
② 服务器IP节点映射
将集群中各个IP节点映射到环上的某一个位置。
将各个服务器使用Hash进行一个哈希,具体可以选择服务器的IP或主机名作为关键字进行哈希,这样每台机器就能确定其在哈希环上的位置。假如4个节点NodeA、B、C、D,经过IP地址的哈希函数计算(hash(ip)),使用IP地址哈希后在环空间的位置如下:
③ key落到服务器的落键规则
当我们需要存储一个kv键值对时,首先计算key的hash值,hash(key),将这个key使用相同的函数Hash计算出哈希值并确定此数据在环上的位置,从此位置沿环顺时针“行走”,第一台遇到的服务器就是其应该定位到的服务器,并将该键值对存储在该节点上。
如我们有Object A、Object B、Object C、Object D四个数据对象,经过哈希计算后,在环空间上的位置如下:根据一致性Hash算法,数据A会被定为到Node A上,B被定为到Node B上,C被定为到Node C上,D被定为到Node D上。
简而言之,言而简直。就是把[0,2^32-1]变成首尾相接的环,然后通过一个相同的hash函数对主机名或者ip进行hash求出在环上的位置。之后有数据过来了,如何选服务器存放呢?也是通过hash求出这个值在环上的位置,但这个hash值的位置可能没有主机,因此顺时针走,第一次遇到得主机就是要存放的服务器。
优点
① 容错性
假设Node C宕机,可以看到此时对象A、B、D不会受到影响,只有C对象被重定位到Node D。一般的,在一致性Hash算法中,如果一台服务器不可用,则受影响的数据仅仅是此服务器到其环空间中前一台服务器(即沿着逆时针方向行走遇到的第一台服务器)之间数据,其它不会受到影响。简单说,就是C挂了,受到影响的只是B、C之间的数据,并且这些数据会转移到D进行存储。
② 扩展性
数据量增加了,需要增加一台节点NodeX,X的位置在A和B之间,那收到影响的也就是A到X之间的数据,重新把A到X的数据录入到X上即可,不会导致hash取余全部数据重新洗牌。
缺点
当服务器台数较少可能出现一致性哈希算法的数据倾斜问题
一致性Hash算法在服务节点太少时,容易因为节点分布不均匀而造成数据倾斜(被缓存的对象大部分集中缓存在某一台服务器上)问题,
例如系统中只有两台服务器:
总结
为了在节点数目发生改变时尽可能少的迁移数据
将所有的存储节点排列在收尾相接的Hash环上,每个key在计算Hash后会顺时针找到临近的存储节点存放。
而当有节点加入或退出时仅影响该节点在Hash环上顺时针相邻的后续节点。
三、哈希槽分区
概念
哈希槽实质就是一个数组,数组[0,2^14 -1]形成hash slot空间。
用于解决均匀分配的问题,在数据和节点之间又加入了一层,把这层称为哈希槽(slot),用于管理数据和节点之间的关系,现在就相当于节点上放的是槽,槽里放的是数据。
槽解决的是粒度问题,相当于把粒度变大了,这样便于数据移动。
哈希解决的是映射问题,使用key的哈希值来计算所在的槽,便于数据分配。
一个集群只能有16384个槽,编号0-16383(0-2^14-1)。这些槽会分配给集群中的所有主节点,分配策略没有要求。可以指定哪些编号的槽分配给哪个主节点。集群会记录节点和槽的对应关系。解决了节点和槽的关系后,接下来就需要对key求哈希值,然后对16384取余,余数是几key就落入对应的槽里。slot = CRC16(key) % 16384。以槽为单位移动数据,因为槽的数目是固定的,处理起来比较容易,这样数据移动问题就解决了。
另外,redis之父建议redis的集群最好不要超过1000台。
为什么一个集群只能有16384个槽呢?又为什么不能超过1000台?
CRC16算法产生的hash值有16bit,该算法可以产生2^16=65536个值。换句话说值是分布在0~65535之间。那在做mod运算的时候,为什么不mod65536,而选择mod16384了
(1)如果槽位为65536,发送心跳信息的消息头达8k,发送的心跳包过于庞大。
在消息头中最占空间的是myslots[CLUSTER_SLOTS/8]。 当槽位为65536时,这块的大小是:65536-8-1024=8kb因为每秒钟,redis节点需要发送一定数量的ping消息作为心跳包,如果槽位为65536,这个ping消息的消息头太大了,浪费带宽。
(2)redis的集群主节点数量基本不可能超过1000个。
集群节点越多,心跳包的消息体内携带的数据越多。如果节点过1000个,也会导致网络拥堵。因此redis作者不建议redis cluster节点数量超过1000个。那么,对于节点数在1000以内的redis cluster集群,16384个槽位够用了。没有必要拓展到65536个。
(3)槽位越小,节点少的情况下,压缩比高,容易传输
Redis主节点的配置信息中它所负责的哈希槽是通过一张bitmap的形式来保存的,在传输过程中会对bitmap进行压缩,但是如果bitmap的填充率sIots/N很高的话(N表示节点数),bitmap的压缩率就很低。如果节点数很少,而哈希槽数量很多的话,bitmap的压缩率就很低。
哈希槽计算
Redis 集群中内置了 16384 个哈希槽,redis 会根据节点数量大致均等的将哈希槽映射到不同的节点。当需要在 Redis 集群中放置一个 key-value时,redis 先对 key 使用 crc16 算法算出一个结果,然后把结果对 16384 求余数,这样每个 key 都会对应一个编号在 0-16383 之间的哈希槽,也就是映射到某个节点上。如下代码,key之A 、B在Node2, key之C落在Node3上
相关文章:

Redis面试题:1~2亿条数据需要缓存,请问如何设计这个存储案例
目录 前言 一、哈希取余分区 优点 缺点 二、一致性哈希算法分区 背景 步骤 ① 算法构建一致性哈希环 ② 服务器IP节点映射 ③ key落到服务器的落键规则 优点 ① 容错性 ② 扩展性 缺点 三、哈希槽分区 前言 单机单台100%不可能,肯定是分布式存储&am…...
程序员必备的软技能-《如何阅读一本书》
阅读很重要,我们真的会阅读吗? 这本书的初版是 1940年,时隔 80年,其内容仍然不过时。第一次读这本书时,给我最大的影响就是主题阅读,每次学习一个新理论、技术,都入手多本关于这项理论、技术的书…...

Java数据结构-栈、队列常用类(Stack、ArrayDeque、LinkedLList)
数据结构的三要素包括:逻辑结构、存储结构、数据的运算。逻辑结构描述的是数据之间的逻辑关系,分为线性结构(线性表(数组、链表)、栈、队列)和非线性结构(图、树、集合)。物理结构也…...

拯救了大批爬虫程序员,因为一个简单的神器
相信大家应该都写过爬虫,简单的爬虫只需要使用 requests 即可。遇到复杂的爬虫,就需要在程序里面加上请求头和参数信息。类似这种:我们一般的步骤是,先到浏览器的网络请求中找到我们需要的请求,然后将请求头和参数信息…...

2023年美赛C题Wordle预测问题三、四建模及Python代码详细讲解
更新时间:2023-2-19 16:30 相关链接 (1)2023年美赛C题Wordle预测问题一建模及Python代码详细讲解 (2)2023年美赛C题Wordle预测问题二建模及Python代码详细讲解 (3)2023年美赛C题Wordle预测问题三、四建模…...

相关性-回忆录(持续更新)
1.TODO方向 (1)数据增强:finetuning阶段需要大量人工标注样本,消耗时间和成本。用户点击数据作为弱监督学习,可以尝试图网络构建节点和边(query聚合); 使用展现未点击生成对抗网络进…...
(必备技能)使用Python实现屏幕截图
(必备技能)使用Python实现屏幕截图 文章目录 (必备技能)使用Python实现屏幕截图 一、序言二、环境配置 1、下载pyautogui包2、下载opencv-python包3、下载PyQt5包4、下载pypiwin32包 三、屏幕截屏源码与解析 1、使用pyautogui方法实现截屏2、使用PyQt方法实现截屏 a.获取窗口…...

「数据仓库」怎么选择现代数据仓库?
构建自己的数据仓库时要考虑的基本因素我们用过很多数据仓库。当我们的客户问我们,对于他们成长中的公司来说,最好的数据仓库是什么时,我们会根据他们的具体需求来考虑答案。通常,他们需要几乎实时的数据,价格低廉&…...

6.3 使用 Swagger 生成 Web API 文档
第6章 构建 RESTful 服务 6.1 RESTful 简介 6.2 构建 RESTful 应用接口 6.3 使用 Swagger 生成 Web API 文档 6.4 实战:实现 Web API 版本控制 6.3 使用 Swagger 生成 Web API 文档 高质量的 API 文档在系统开发的过程中非常重要。本节介绍什么是 Swaggerÿ…...

Day894.加锁规则的一些问题 -MySQL实战
加锁规则的一些问题 Hi,我是阿昌,今天学习记录的是关于加锁规则的一些问题的内容。 加锁规则,这个规则中,包含了两个“原则”、两个“优化”和一个“bug”: 原则 1:加锁的基本单位是 next-key lock。nex…...

【Flutter入门到进阶】Dart进阶篇---Dart异步编程
1 并行与并发的编程区别 1.1 并发与并行 1.1.1 说明 我们举个例子,如果有条高速公路 A 上面并排有 8 条车道,那么最大的并行车辆就是 8 辆此条高速公路 A 同时并排行走的车辆小于等于 8 辆的时候,车辆就可以并行运行。 CPU 也是这个原理,一个 CPU 相当于一个高速公路 A,核心数…...

点云配准方法原理(NDT、ICP)
配准是点云处理中的一个基础问题,众多学者此问题进行了广泛而深入的研究,也出现了一系列优秀成熟的算法,在三维建模、自动驾驶等领域发挥着重要的作用。 本文主要介绍粗配准NDT (Normal Distribution Transform) 与 精配准ICP (Iterative Cl…...
大规模 IoT 边缘容器集群管理的几种架构-0-边缘容器及架构简介
📚️Reference: IoT 边缘计算系列文章 什么是边缘容器? 边缘容器的概念 边缘容器是分散的计算资源,尽可能靠近最终用户或设备,以减少延迟、节省带宽并增强整体数字体验。 可以访问互联网的设备数量每天都在增加。有包括但不限于…...

代码随想录算法训练营第45天动态规划 背包基础 1 2、 416. 分割等和子集
文章目录01背包基础 (二维数组)思路递推公式初始化遍历顺序一维dp数组(滚动数组)一维数组的递推公式遍历顺序LeetCode 416. 分割等和子集思路总结01背包基础 (二维数组) 思路 根据动态规划五部进行分析&a…...

QT学习记录(六)类对象属性
类对象属性用来描述类对象的一些信息和当前的状态。类对象属性可以由类的编写者在编写类的时候定义,也可以由类的使用者在使用对象的时候定义。 由类的编写者定义 QPROPERTY()宏就是用来定义一个对象属性。 以第二行属性举例 QPROPERTY(bool enabled READ isEnabl…...
Spring Cloud Alibaba从搭建到源码完整进阶教程
微服务简介 Spring Cloud Alibaba 微服务简介 Nacos注册中心配置中心 Spring Cloud Nacos实战(一)- 下载和安装 Spring Cloud Nacos实战(二)- 服务提供者注册 Spring Cloud Nacos实战(三)- 服务消费者…...

Spring Cloud Nacos实战(一)- 下载和安装
Spring Cloud Alibaba Nacos下载和安装 Nacos介绍 Nacos(Naming Configuration Service) 是一个易于使用的动态服务发现、配置和服务管理平台,用于构建云原生应用程序 服务发现是微服务架构中的关键组件之一。Nacos 致力于帮助您发现…...

深入理解设备像素比
文章目录参考描述像素分辨率显示分辨率图像分辨率物理分辨率分辨率单位(仅部分)DPIPPI设备像素比设备物理像素设备独立像素设备像素比产生放大与缩小尾声参考 项目描述关于物理像素、逻辑像素(css像素)、分辨率、像素比的超详细讲…...

Revisiting Distributed Synchronous SGD 带有Back-up机制的分布式同步SGD方法 论文精读
论文链接:Revisiting Distributed Synchronous SGD ABS 本文介绍了用于分布式机器学习的同步和异步SGDSGDSGD,同时指出各自的缺点:stragglersstragglersstragglers和stalenessstalenessstaleness。 同时为了解决同步SGDSGDSGD存在straggle…...

shiro CVE-2020-13933
0x00 前言 同CVE-2020-1957,补充一下笔记,在CVE-2020-1957的基础上进行了绕过。 影响版本:Apache Shiro < 1.6.0 环境搭建参考:shiro CVE-2020-1957 0x01 漏洞复现 CVE-2020-13933中使用%3b绕过了shiro /*的检测方式&…...

2023年ASOC SCI2区TOP,随机跟随蚁群优化算法RFACO,深度解析+性能实测
目录 1.摘要2.连续蚁群优化算法ACOR3.随机跟随策略4.结果展示5.参考文献6.代码获取7.算法辅导应用定制读者交流 1.摘要 连续蚁群优化是一种基于群体的启发式搜索算法(ACOR),其灵感来源于蚁群的路径寻找行为,具有结构简单、控制参…...
Nginx Stream 层连接数限流实战ngx_stream_limit_conn_module
1.为什么需要连接数限流? 数据库/Redis/MQ 连接耗资源:恶意脚本或误配可能瞬间占满连接池,拖垮后端。防御慢速攻击:层叠式限速(连接数+带宽)可阻挡「Slow Loris」之类的 TCP 低速洪水。公平接入…...

免费插件集-illustrator插件-Ai插件-随机填色
文章目录 1.介绍2.安装3.通过窗口>扩展>知了插件4.功能解释5.总结 1.介绍 本文介绍一款免费插件,加强illustrator使用人员工作效率,实现路径随机填色。首先从下载网址下载这款插件https://download.csdn.net/download/m0_67316550/87890501&#…...

Unity版本使用情况统计(更新至2025年5月)
UWA发布|本期UWA发布的内容是Unity版本使用统计(第十六期),统计周期为2024年11月至2025年5月,数据来源于UWA网站(www.uwa4d.com)性能诊断提测的项目。希望给Unity开发者提供相关的行业趋势作为参…...

基于51单片机和8X8点阵屏、独立按键的填充消除类小游戏
目录 系列文章目录前言一、效果展示二、原理分析三、各模块代码1、8X8点阵屏2、独立按键3、定时器04、定时器1 四、主函数总结 系列文章目录 前言 使用的是普中A2开发板。 【单片机】STC89C52RC 【频率】12T11.0592MHz 【外设】8X8点阵屏、独立按键 效果查看/操作演示&#x…...

【Java开发日记】说一说 SpringBoot 中 CommandLineRunner
目录 1、CommandLineRunner SpringBoot中CommandLineRunner的作用 简单例子 多个类实现CommandLineRunner接口执行顺序的保证 通过实现Ordered接口实现控制执行顺序 通过Order注解实现控制执行顺序 Order 作用 2、ApplicationRunner 3、传递参数 4、源码跟踪 run()方…...

vue3 + vite实现动态路由,并进行vuex持久化设计
在后台管理系统中,如何根据后端返回的接口,来动态的设计路由呢,今天一片文章带你们解 1、在vuex中设置一个方法 拿到完整的路由数据 const state {routerList: []}; const mutations { dynameicMenu(state, payload) {// 第一步 通过glob…...

11 - ArcGIS For JavaScript -- 高程分析
这里写自定义目录标题 描述代码实现结果 描述 高程分析是地理信息系统(GIS)中的核心功能之一,主要涉及对地表高度数据(数字高程模型, DEM)的处理和分析。 ArcGIS For JavaScript4.32版本的发布,提供了Web端的针对高程分析的功能。 代码实现 <!doct…...
【PmHub面试篇】性能监控与分布式追踪利器Skywalking面试专题分析
你好,欢迎来到本次关于PmHub整合性能监控与分布式追踪利器Skywalking的面试系列分享。在这篇文章中,我们将深入探讨这一技术领域的相关面试题预测。若想对相关内容有更透彻的理解,强烈推荐参考之前发布的博文:【PmHub后端篇】Skyw…...

数据库SQLite基础
SQLite的存储结构 --->B树 大型数据库 :Oracle 中型数据库 :Server是微软开发的数据库产品,主要支持windows平台 小型数据库 : MySQL是一个小型关系型数据库管理系统。开放源码 (嵌入式不需要存储太多数据) 一、SQLite基础 SQLite的源代码…...