当前位置: 首页 > news >正文

Flink之Partitioner(分区规则)

Flink之Partitioner(分区规则)

方法注释
global()全部发往1个task
broadcast()广播(前面的文章讲解过,这里不做阐述)
forward()上下游并行度一致时一对一发送,和同一个算子连中算子的OneToOne是一回事
shuffle()随机分配(只是随机,同Spark的shuffle不同)
rebalance()轮询分配,默认机制就是rebalance()
recale()一般是下游task是上游task的并行度的倍数时,在生成job时,会将下游中的某几个subtask和上游的某个subtask绑成一组,然后在组内上游subtask以轮询的方式将数据发送给下游的subtask.
partitionCustom自定义分区器(这里不做演示,后续会单独写一个自定义分区器的内容)
keyBy()根据数据key的HashCode进行Hash分配
  • global

    global在实际业务场景中使用的不是很多,一般都是需要全局数据汇总的时候才会用到.global就是将上游的数据全部发往下游的第一个subtask中,也就是说下游设置再多的并行度是没意义的,所以使用global的时候,下游的task的并行度都是1.
    在这里插入图片描述
    这里结合代码看一下:

    public class FlinkPartitioner {public static void main(String[] args) throws Exception {Configuration conf = new Configuration();conf.setInteger("rest.port", 8081);// 开启本地WebUI,构建流环境StreamExecutionEnvironment env = StreamExecutionEnvironment.createLocalEnvironmentWithWebUI(conf);// 添加数据源,SocketDataStreamSource<String> sourceStream = env.socketTextStream("localhost", 9999);// 转大写,设置并行度为3,且设置数据分区方式为globalDataStream<String> upperCaseMapStream = sourceStream.map(s -> s.toUpperCase()).setParallelism(3).global();// 切分字符串,设置并行度为1SingleOutputStreamOperator<String> splitFlatMapStream = upperCaseMapStream.flatMap(new FlatMapFunction<String, String>() {@Overridepublic void flatMap(String value, Collector<String> out) throws Exception {String[] split = value.split(",");for (String s : split) {out.collect(s);}}}).setParallelism(1);//......env.execute("Flink Partitioner");}
    }
    

    WebUI界面查看代码中upperCaseMapStreamsplitFlatMapStream之间数据的发送方式
    在这里插入图片描述

  • forward

    forward其实就是一对一发送数据,和之前讲解Task的文章中提到的算子之间OneToOne的模式是一样的,就是可以将forward理解为同一个task chain[算子链]中算子之间的数据传输方式,但是使用forward的前提是上下游的算子并行度是一致的也就是上下游的subtask数量保持一致,图解如下:
    在这里插入图片描述

    代码内容如下:

    public class FlinkPartitioner {public static void main(String[] args) throws Exception {Configuration conf = new Configuration();conf.setInteger("rest.port", 8081);// 开启本地WebUI,构建流环境StreamExecutionEnvironment env = StreamExecutionEnvironment.createLocalEnvironmentWithWebUI(conf);// 添加数据源,SocketDataStreamSource<String> sourceStream = env.socketTextStream("localhost", 9999);// 转大写,设置为forward分区方式DataStream<String> upperCaseMapStream = sourceStream.map(s -> s.toUpperCase()).setParallelism(3).forward();// 切分字符串SingleOutputStreamOperator<String> splitFlatMapStream = upperCaseMapStream.flatMap(new FlatMapFunction<String, String>() {@Overridepublic void flatMap(String value, Collector<String> out) throws Exception {String[] split = value.split(",");for (String s : split) {out.collect(s);}}}).setParallelism(3).startNewChain(); // 这里加上.startNewChain是为了在WebUI能看到效果,因为upperCaseMapStream和splitFlatMapStream的并行度是一致的,不加startNewChain默认的机制会将两者划分到同一个算子链中,就看不到实际的效果了.// ...env.execute("Flink Partitioner");}
    }
    

    WebUI界面查看upperCaseMapStreamsplitFlatMapStream的数据发送方式,如下:
    在这里插入图片描述

  • shuffle

    通过前面WebUI的图片我们可以看到,从Socket数据源将数据发送到第一个map的时候使用的是默认的rebalance方式,也就是轮询发送的方式,而这里说的shuffle虽然也是一对多的发送方式,但是发送数据时是随机的,举个例子,上游有3subtask,下游有5subtask,数据源有5条数据,上游中的某一个subtask向下游发送数据时,是随机发送的,下游的5subtask并不是每个都一定能接受到数据,可能有的接收到1条,有的接收到2条,有的接收到3条数据,这就是shuffle发送数据的方式.

    如果说上两个operator并行度一致,上游选择了shuffle发送数据的方式,那么两个operator会绑定成一个task chain么?不会,因为shuffle的数据发送方式就已经导致两个operator不是OneToOne的模式了.
    在这里插入图片描述
    代码示例:

    public class FlinkPartitioner {public static void main(String[] args) throws Exception {Configuration conf = new Configuration();conf.setInteger("rest.port", 8081);// 开启本地WebUI,构建流环境StreamExecutionEnvironment env = StreamExecutionEnvironment.createLocalEnvironmentWithWebUI(conf);// 添加数据源,SocketDataStreamSource<String> sourceStream = env.socketTextStream("localhost", 9999);// 转大写,设置为shuffle分区方式DataStream<String> upperCaseMapStream = sourceStream.map(s -> s.toUpperCase()).setParallelism(3).shuffle();// 切分字符串SingleOutputStreamOperator<String> splitFlatMapStream = upperCaseMapStream.flatMap(new FlatMapFunction<String, String>() {@Overridepublic void flatMap(String value, Collector<String> out) throws Exception {String[] split = value.split(",");for (String s : split) {out.collect(s);}}}).setParallelism(7)// ...env.execute("Flink Partitioner");}
    }
    

    WebUI界面查看upperCaseMapStreamsplitFlatMapStream的数据发送方式,如下:
    在这里插入图片描述

  • Rebalance

    rebalance就是Flink默认的数据分发机制,直白的讲就是给每个小朋友一人一块糖果,直到发完为止,不偏不倚,这个不细说了,没什么可讲的.
    在这里插入图片描述

  • recale

    关于recale前面说到了是组内的方式进行轮询分发数据,这里就以图解的方式进行讲解,便于理解.

    Flink任务启动时,如果发现上下游中使用了recale分发数据的方式就会将上下游的subtask进行分组绑定,如上游有2个subtask,下游有四个subtask,就会将上游的一个subtask和下游的两个subtask进行绑定,如下图:
    在这里插入图片描述

    当上下游对应的subtask分组后,上下游组内的subtak就会以组内轮询的方式发送数据,如下图:
    在这里插入图片描述

  • keyBy

    keyBy使用的HASH分区方式,实际是hashCode() + murmurHash()的组合方式,这个在源码的KeyGroupRangeAssignment类中是可以看到的,简单来说根据keyhash值模除以下游的最大并行度(return MathUtils.murmurHash(keyHash) % maxParallelism;).

    关于keyBy的使用应该都很熟悉了,这里直接给大家看演示结果吧,如下图:
    在这里插入图片描述

以上就是对Flink中分区规则的讲解.

相关文章:

Flink之Partitioner(分区规则)

Flink之Partitioner(分区规则) 方法注释global()全部发往1个taskbroadcast()广播(前面的文章讲解过,这里不做阐述)forward()上下游并行度一致时一对一发送,和同一个算子连中算子的OneToOne是一回事shuffle()随机分配(只是随机,同Spark的shuffle不同)rebalance()轮询分配,默认机…...

tk切换到mac的code分享

文章目录 前言一、基础环境配置二、开发软件与扩展1.用到的开发软件与平替、扩展情况 总结 前言 最近换上了coding人生的第一台mac&#xff0c;以前一直偏好tk&#xff0c;近来身边的朋友越来越多的用mac了&#xff0c;win的自动更新越来越占磁盘了&#xff0c;而且win11抛弃了…...

spark的standalone 分布式搭建

一、环境准备 集群环境hadoop11&#xff0c;hadoop12 &#xff0c;hadoop13 安装 zookeeper 和 HDFS 1、启动zookeeper -- 启动zookeeper(11,12,13都需要启动) xcall.sh zkServer.sh start -- 或者 zk.sh start -- xcall.sh 和zk.sh都是自己写的脚本-- 查看进程 jps -- 有…...

浅析基于视频汇聚与AI智能分析的新零售方案设计

一、行业背景 近年来&#xff0c;随着新零售概念的提出&#xff0c;国内外各大企业纷纷布局智慧零售领域。从无人便利店、智能售货机&#xff0c;到线上线下融合的电商平台&#xff0c;再到通过大数据分析实现精准推送的个性化营销&#xff0c;智慧零售的触角已经深入各个零售…...

SpringMVC之异常处理

SpringMVC之异常处理 异常分为编译时异常和运行时异常&#xff0c;编译时异常我们trycatch捕获&#xff0c;捕获后自行处理&#xff0c;而运行时异常是不可预期的&#xff0c;就需要规范编码来避免&#xff0c;在SpringMVC中&#xff0c;不管是编译异常还是运行时异常&#xff…...

保险龙头科技进化论:太保的六年

如果从2013年中国首家互联网保险公司——众安在线的成立算起&#xff0c;保险科技在我国的发展已走进第十个年头。十年以来&#xff0c;在政策指引、技术发展和金融机构数字化转型的大背景下&#xff0c;科技赋能保险业高质量发展转型已成为行业共识。 大数据、云计算、人工智…...

升级STM32电机PID速度闭环编程:从F1到F4的移植技巧与实例解析

引言&#xff1a; 在嵌入式系统开发中&#xff0c;STM32系列微控制器广泛应用于各种应用领域。而对于直流有刷电机的控制&#xff0c;PID速度闭环是一种常用的控制方式。本文将以此为例&#xff0c;探讨如何从STM32F1系列移植到STM32F4系列&#xff0c;并详细介绍HAL库在不同型…...

GaussDB 实验篇+openGauss的4种1级分区案例

✔ 范围分区/range分区 -- 创建表 drop table if exists zzt.par_range; create table if not exists zzt.par_range (empno integer,ename char(10),job char(9),mgr integer(4),hiredate date,sal numeric(7,2),comm numeric(7,2),deptno integer,constraint pk_par_emp pri…...

Ruby软件外包开发语言特点

Ruby 是一种动态、开放源代码的编程语言&#xff0c;它注重简洁性和开发人员的幸福感。在许多方面都具有优点&#xff0c;但由于其动态类型和解释执行的特性&#xff0c;它可能不适合某些对性能和类型安全性要求较高的场景。下面和大家分享 Ruby 语言的一些主要特点以及适用的场…...

《系统架构设计师教程》重点章节思维导图

内容来自《系统架构设计师教程》&#xff0c;筛选系统架构设计师考试中分值重点分布的章节&#xff0c;根据章节的内容整理出相关思维导图。 重点章节 第2章&#xff1a;计算机系统知识第5章&#xff1a;软件工程基础知识第7章&#xff1a;系统架构设计基础知识第8章&#xff1…...

mac录屏工具,录屏没有声音的解决办法

mac录屏工具&#xff0c;录屏没有声音的解决办法 在使用macbook录制屏幕时&#xff0c;发现自带的录屏工具QuickTime Player没有声音&#xff0c;于是尝试了多款录屏工具&#xff0c;对其做一些经验总结&#xff08;省流&#xff1a;APP Store直接可以免费下载使用Omi录屏专家…...

神经网络基础-神经网络补充概念-33-偏差与方差

概念 偏差&#xff08;Bias&#xff09;&#xff1a; 偏差是模型预测值与实际值之间的差距&#xff0c;它反映了模型对训练数据的拟合能力。高偏差意味着模型无法很好地拟合训练数据&#xff0c;通常会导致欠拟合。欠拟合是指模型过于简单&#xff0c;不能捕捉数据中的复杂模式…...

单片机第一季:零基础13——AD和DA转换

1&#xff0c;AD转换基本概念 51 单片机系统内部运算时用的全部是数字量&#xff0c;即0 和1&#xff0c;因此对单片机系统而言&#xff0c;无法直接操作模拟量&#xff0c;必须将模拟量转换成数字量。所谓数字量&#xff0c;就是用一系列0 和1 组成的二进制代码表示某个信号大…...

小区外卖跑腿,解决最后100米配送难题

小区外卖跑腿&#xff0c;解决最后100米配送难题 小区外卖跑腿作为新市场环境下的创业模式&#xff0c;通过选择小区里的闲散人员作为骑手&#xff0c;解决了最后100米配送的问题。这项业务不仅包括小区业主的取快递、寄快递等日常需求&#xff0c;还能提供小区帮忙、小区外卖…...

ZooKeeper的应用场景(命名服务、分布式协调通知)

3 命名服务 命名服务(NameService)也是分布式系统中比较常见的一类场景&#xff0c;在《Java网络高级编程》一书中提到&#xff0c;命名服务是分布式系统最基本的公共服务之一。在分布式系统中&#xff0c;被命名的实体通常可以是集群中的机器、提供的服务地址或远程对象等一这…...

网络套接字

网络套接字 文章目录 网络套接字认识端口号初识TCP协议初识UDP协议网络字节序 socket编程接口socket创建socket文件描述符bind绑定端口号sockaddr结构体netstat -nuap&#xff1a;查看服务器网络信息 代码编译运行展示 实现简单UDP服务器开发 认识端口号 端口号(port)是传输层协…...

对话 4EVERLAND:Web3 是云计算的新基建吗?

在传统云计算的发展过程中&#xff0c;数据存储与计算的中心化问题&#xff0c;对用户来说一直存在着潜在的安全与隐私风险——例如单点故障可能会导致网络瘫痪和数据泄露等危险。同时&#xff0c;随着越来越多 Web3 项目应用的落地&#xff0c;对于数据云计算的性能要求也越来…...

iOS申请证书(.p12)和描述文件(.mobileprovision)

打包app时&#xff0c;经常会用到ios证书&#xff0c;但很多人都苦于没有苹果电脑&#xff0c;即使有苹果电脑的&#xff0c;也会觉得苹果电脑操作也很麻烦&#xff0c;这里记录一下&#xff0c;用香蕉云编&#xff0c;申请证书及描述文件的过程。 香蕉云编的地址&#xff1a;…...

Java:PO、VO、BO、DO、DAO、DTO、POJO

&#x1f497;wei_shuo的个人主页 &#x1f4ab;wei_shuo的学习社区 &#x1f310;Hello World &#xff01; Java&#xff1a;PO、VO、BO、DO、DAO、DTO、POJO PO持久化对象&#xff08;Persistent Object&#xff09; PO是持久化对象&#xff0c;用于表示数据库中的实体或表…...

c语言每日一练(8)

前言&#xff1a;每日一练系列&#xff0c;每一期都包含5道选择题&#xff0c;2道编程题&#xff0c;博主会尽可能详细地进行讲解&#xff0c;令初学者也能听的清晰。每日一练系列会持续更新&#xff0c;暑假时三天之内必有一更&#xff0c;到了开学之后&#xff0c;将看学业情…...

后进先出(LIFO)详解

LIFO 是 Last In, First Out 的缩写&#xff0c;中文译为后进先出。这是一种数据结构的工作原则&#xff0c;类似于一摞盘子或一叠书本&#xff1a; 最后放进去的元素最先出来 -想象往筒状容器里放盘子&#xff1a; &#xff08;1&#xff09;你放进的最后一个盘子&#xff08…...

Android Wi-Fi 连接失败日志分析

1. Android wifi 关键日志总结 (1) Wi-Fi 断开 (CTRL-EVENT-DISCONNECTED reason3) 日志相关部分&#xff1a; 06-05 10:48:40.987 943 943 I wpa_supplicant: wlan0: CTRL-EVENT-DISCONNECTED bssid44:9b:c1:57:a8:90 reason3 locally_generated1解析&#xff1a; CTR…...

Cursor实现用excel数据填充word模版的方法

cursor主页&#xff1a;https://www.cursor.com/ 任务目标&#xff1a;把excel格式的数据里的单元格&#xff0c;按照某一个固定模版填充到word中 文章目录 注意事项逐步生成程序1. 确定格式2. 调试程序 注意事项 直接给一个excel文件和最终呈现的word文件的示例&#xff0c;…...

树莓派超全系列教程文档--(62)使用rpicam-app通过网络流式传输视频

使用rpicam-app通过网络流式传输视频 使用 rpicam-app 通过网络流式传输视频UDPTCPRTSPlibavGStreamerRTPlibcamerasrc GStreamer 元素 文章来源&#xff1a; http://raspberry.dns8844.cn/documentation 原文网址 使用 rpicam-app 通过网络流式传输视频 本节介绍来自 rpica…...

多场景 OkHttpClient 管理器 - Android 网络通信解决方案

下面是一个完整的 Android 实现&#xff0c;展示如何创建和管理多个 OkHttpClient 实例&#xff0c;分别用于长连接、普通 HTTP 请求和文件下载场景。 <?xml version"1.0" encoding"utf-8"?> <LinearLayout xmlns:android"http://schemas…...

自然语言处理——循环神经网络

自然语言处理——循环神经网络 循环神经网络应用到基于机器学习的自然语言处理任务序列到类别同步的序列到序列模式异步的序列到序列模式 参数学习和长程依赖问题基于门控的循环神经网络门控循环单元&#xff08;GRU&#xff09;长短期记忆神经网络&#xff08;LSTM&#xff09…...

如何在最短时间内提升打ctf(web)的水平?

刚刚刷完2遍 bugku 的 web 题&#xff0c;前来答题。 每个人对刷题理解是不同&#xff0c;有的人是看了writeup就等于刷了&#xff0c;有的人是收藏了writeup就等于刷了&#xff0c;有的人是跟着writeup做了一遍就等于刷了&#xff0c;还有的人是独立思考做了一遍就等于刷了。…...

JVM 内存结构 详解

内存结构 运行时数据区&#xff1a; Java虚拟机在运行Java程序过程中管理的内存区域。 程序计数器&#xff1a; ​ 线程私有&#xff0c;程序控制流的指示器&#xff0c;分支、循环、跳转、异常处理、线程恢复等基础功能都依赖这个计数器完成。 ​ 每个线程都有一个程序计数…...

使用LangGraph和LangSmith构建多智能体人工智能系统

现在&#xff0c;通过组合几个较小的子智能体来创建一个强大的人工智能智能体正成为一种趋势。但这也带来了一些挑战&#xff0c;比如减少幻觉、管理对话流程、在测试期间留意智能体的工作方式、允许人工介入以及评估其性能。你需要进行大量的反复试验。 在这篇博客〔原作者&a…...

无人机侦测与反制技术的进展与应用

国家电网无人机侦测与反制技术的进展与应用 引言 随着无人机&#xff08;无人驾驶飞行器&#xff0c;UAV&#xff09;技术的快速发展&#xff0c;其在商业、娱乐和军事领域的广泛应用带来了新的安全挑战。特别是对于关键基础设施如电力系统&#xff0c;无人机的“黑飞”&…...