神经网络基础-神经网络补充概念-33-偏差与方差
概念
偏差(Bias):
偏差是模型预测值与实际值之间的差距,它反映了模型对训练数据的拟合能力。高偏差意味着模型无法很好地拟合训练数据,通常会导致欠拟合。欠拟合是指模型过于简单,不能捕捉数据中的复杂模式,导致在训练集和测试集上都表现不佳。
方差(Variance):
方差是模型在不同训练数据集上预测值的变化程度,它反映了模型对训练数据的敏感性。高方差意味着模型过于复杂,对训练数据的小变化非常敏感,通常会导致过拟合。过拟合是指模型在训练集上表现很好,但在未见过的测试数据上表现不佳。
权衡
偏差-方差权衡(Bias-Variance Trade-off):
在实际机器学习中,我们通常希望找到适当的模型复杂度,以平衡偏差和方差之间的关系,从而实现良好的泛化能力。一个理想的模型应该具有适当的复杂度,能够在训练数据上进行合适的拟合,同时又不会过于敏感,可以较好地适应未见过的数据。
解决方法
解决偏差和方差的方法包括:
减小偏差:增加模型的复杂度,使用更多的特征或更深的网络等,以提高模型的表达能力。
减小方差:使用正则化方法,如L1/L2正则化、Dropout等,以减少模型对训练数据的过度拟合。
总结:
偏差反映了模型对训练数据的拟合能力,高偏差通常导致欠拟合。
方差反映了模型对不同训练数据的变化敏感性,高方差通常导致过拟合。
偏差和方差之间存在权衡关系,需要找到适当的模型复杂度来实现良好的泛化能力。
代码实现
import numpy as np
import matplotlib.pyplot as plt
from sklearn.model_selection import train_test_split
from sklearn.preprocessing import PolynomialFeatures
from sklearn.linear_model import LinearRegression
from sklearn.metrics import mean_squared_error# 生成随机数据
np.random.seed(0)
X = np.random.rand(100, 1)
y = 2 * X + 1 + np.random.randn(100, 1) * 0.2# 划分训练集和测试集
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=0)# 创建多项式特征
poly = PolynomialFeatures(degree=10)
X_train_poly = poly.fit_transform(X_train)
X_test_poly = poly.transform(X_test)# 使用不同复杂度的模型进行拟合
model_underfit = LinearRegression()
model_properfit = LinearRegression()
model_overfit = LinearRegression()model_underfit.fit(X_train, y_train)
model_properfit.fit(X_train_poly, y_train)
model_overfit.fit(X_train_poly, y_train)# 绘制拟合结果
plt.figure(figsize=(12, 6))plt.subplot(1, 3, 1)
plt.scatter(X_train, y_train, color='blue', label='Training Data')
plt.plot(X_train, model_underfit.predict(X_train), color='red', label='Underfitting')
plt.legend()
plt.title('Underfitting')plt.subplot(1, 3, 2)
plt.scatter(X_train, y_train, color='blue', label='Training Data')
plt.plot(X_train, model_properfit.predict(X_train_poly), color='red', label='Properfitting')
plt.legend()
plt.title('Properfitting')plt.subplot(1, 3, 3)
plt.scatter(X_train, y_train, color='blue', label='Training Data')
plt.plot(X_train, model_overfit.predict(X_train_poly), color='red', label='Overfitting')
plt.legend()
plt.title('Overfitting')plt.tight_layout()
plt.show()# 计算测试集上的均方误差
y_pred_underfit = model_underfit.predict(X_test)
y_pred_properfit = model_properfit.predict(X_test_poly)
y_pred_overfit = model_overfit.predict(X_test_poly)mse_underfit = mean_squared_error(y_test, y_pred_underfit)
mse_properfit = mean_squared_error(y_test, y_pred_properfit)
mse_overfit = mean_squared_error(y_test, y_pred_overfit)print("MSE Underfit:", mse_underfit)
print("MSE Properfit:", mse_properfit)
print("MSE Overfit:", mse_overfit)
在这个示例中,我们生成了一个随机的多项式回归问题,并使用不同复杂度的线性回归模型进行拟合。通过绘制拟合结果和计算测试集上的均方误差,我们可以看到:
Underfitting(欠拟合):模型过于简单,无法捕捉数据中的复杂模式,导致在训练集和测试集上都表现不佳。
Properfitting(适当拟合):使用多项式特征的线性回归模型可以适当地拟合数据,既不过于简单也不过于复杂。
Overfitting(过拟合):模型过于复杂,对训练数据的小变化非常敏感,导致在训练集上表现良好,但在测试集上表现不佳。
通过调整模型的复杂度,我们可以在适当的范围内平衡偏差和方差,从而实现更好的泛化能力。
相关文章:
神经网络基础-神经网络补充概念-33-偏差与方差
概念 偏差(Bias): 偏差是模型预测值与实际值之间的差距,它反映了模型对训练数据的拟合能力。高偏差意味着模型无法很好地拟合训练数据,通常会导致欠拟合。欠拟合是指模型过于简单,不能捕捉数据中的复杂模式…...
单片机第一季:零基础13——AD和DA转换
1,AD转换基本概念 51 单片机系统内部运算时用的全部是数字量,即0 和1,因此对单片机系统而言,无法直接操作模拟量,必须将模拟量转换成数字量。所谓数字量,就是用一系列0 和1 组成的二进制代码表示某个信号大…...
小区外卖跑腿,解决最后100米配送难题
小区外卖跑腿,解决最后100米配送难题 小区外卖跑腿作为新市场环境下的创业模式,通过选择小区里的闲散人员作为骑手,解决了最后100米配送的问题。这项业务不仅包括小区业主的取快递、寄快递等日常需求,还能提供小区帮忙、小区外卖…...
ZooKeeper的应用场景(命名服务、分布式协调通知)
3 命名服务 命名服务(NameService)也是分布式系统中比较常见的一类场景,在《Java网络高级编程》一书中提到,命名服务是分布式系统最基本的公共服务之一。在分布式系统中,被命名的实体通常可以是集群中的机器、提供的服务地址或远程对象等一这…...
网络套接字
网络套接字 文章目录 网络套接字认识端口号初识TCP协议初识UDP协议网络字节序 socket编程接口socket创建socket文件描述符bind绑定端口号sockaddr结构体netstat -nuap:查看服务器网络信息 代码编译运行展示 实现简单UDP服务器开发 认识端口号 端口号(port)是传输层协…...
对话 4EVERLAND:Web3 是云计算的新基建吗?
在传统云计算的发展过程中,数据存储与计算的中心化问题,对用户来说一直存在着潜在的安全与隐私风险——例如单点故障可能会导致网络瘫痪和数据泄露等危险。同时,随着越来越多 Web3 项目应用的落地,对于数据云计算的性能要求也越来…...
iOS申请证书(.p12)和描述文件(.mobileprovision)
打包app时,经常会用到ios证书,但很多人都苦于没有苹果电脑,即使有苹果电脑的,也会觉得苹果电脑操作也很麻烦,这里记录一下,用香蕉云编,申请证书及描述文件的过程。 香蕉云编的地址:…...
Java:PO、VO、BO、DO、DAO、DTO、POJO
💗wei_shuo的个人主页 💫wei_shuo的学习社区 🌐Hello World ! Java:PO、VO、BO、DO、DAO、DTO、POJO PO持久化对象(Persistent Object) PO是持久化对象,用于表示数据库中的实体或表…...
c语言每日一练(8)
前言:每日一练系列,每一期都包含5道选择题,2道编程题,博主会尽可能详细地进行讲解,令初学者也能听的清晰。每日一练系列会持续更新,暑假时三天之内必有一更,到了开学之后,将看学业情…...
周期 角频率 频率 振幅 初相角
周期 角频率 频率 振幅 初相角 当我们谈论傅里叶级数或波形分析时,以下术语经常出现: 周期 T T T: 函数在其图形上重复的时间或空间的长度。周期的倒数是频率。 频率 f f f: 周期的倒数,即一秒内波形重复的次数。单位通常为赫兹ÿ…...
根据一棵树的两种遍历构造二叉树
题目 给定两个整数数组 preorder 和 inorder ,其中 preorder 是二叉树的先序遍历, inorder 是同一棵树的中序遍历,请构造二叉树并返回其根节点。 示例 1: 输入: preorder [3,9,20,15,7], inorder [9,3,15,20,7] 输出: [3,9,20,null,null,…...
stack 、 queue的语法使用及底层实现以及deque的介绍【C++】
文章目录 stack的使用queue的使用适配器queue的模拟实现stack的模拟实现deque stack的使用 stack是一种容器适配器,具有后进先出,只能从容器的一端进行元素的插入与提取操作 #include <iostream> #include <vector> #include <stack&g…...
没学C++,如何从C语言丝滑过度到python【python基础万字详解】
大家好,我是纪宁。 文章将从C语言出发,深入介绍python的基础知识,也包括很多python的新增知识点详解。 文章目录 1.python的输入输出,重新认识 hello world,重回那个激情燃烧的岁月1.1 输出函数print的规则1.2 输入函…...
haproxy负载均衡
1、配置环境 作用环境windows测试 192.168.33.158 172.25.0.11 haproxy负载均衡haproxy:2.8.1,centos7172.25.0.31web服务器1--rs1Apache:2.4,redhat9172.25.0.32web服务器2--rs2Apache:2.4 , redhat9 2、…...
【数据结构】顺序队列模拟实现
💐 🌸 🌷 🍀 🌹 🌻 🌺 🍁 🍃 🍂 🌿 🍄🍝 🍛 🍤 📃个人主页 :阿然成长日记 …...
TiDB数据库从入门到精通系列之六:使用 TiCDC 将 TiDB 的数据同步到 Apache Kafka
TiDB数据库从入门到精通系列之六:使用 TiCDC 将 TiDB 的数据同步到 Apache Kafka 一、技术流程二、搭建环境三、创建Kafka changefeed四、写入数据以产生变更日志五、配置 Flink 消费 Kafka 数据 一、技术流程 快速搭建 TiCDC 集群、Kafka 集群和 Flink 集群创建 c…...
Spring对象装配
在spring中,Bean的执行流程为启动spring容器,实例化bean,将bean注册到spring容器中,将bean装配到需要的类中。 既然我们需要将bea装配到需要的类中,那么如何实现呢?这篇文章,将来阐述一下如何实…...
bigemap如何添加mapbox地图?
第一步 打开浏览器,找到你要访问的地图的URL地址,并且确认可以正常在浏览器中访问;浏览器中不能访问,同样也不能在软件中访问。 以下为常用地图源地址: 天地图: http://map.tianditu.gov.cn 包含&…...
python爬虫6:lxml库
python爬虫6:lxml库 前言 python实现网络爬虫非常简单,只需要掌握一定的基础知识和一定的库使用技巧即可。本系列目标旨在梳理相关知识点,方便以后复习。 申明 本系列所涉及的代码仅用于个人研究与讨论,并不会对网站产生不好…...
Linux查找命令
find find /dir -name filename 按名字查找 find . -name “*.c” 将当前目录及其子目录下所有文件后缀为 .c 的文件列出来 find . -type f 将当前目录及其子目录中的所有文件列出 find . -ctime 20 将当前目录及其子目录下所有最近 20 天内更新过的文件列出 find / -type f -…...
装饰模式(Decorator Pattern)重构java邮件发奖系统实战
前言 现在我们有个如下的需求,设计一个邮件发奖的小系统, 需求 1.数据验证 → 2. 敏感信息加密 → 3. 日志记录 → 4. 实际发送邮件 装饰器模式(Decorator Pattern)允许向一个现有的对象添加新的功能,同时又不改变其…...
Oracle查询表空间大小
1 查询数据库中所有的表空间以及表空间所占空间的大小 SELECTtablespace_name,sum( bytes ) / 1024 / 1024 FROMdba_data_files GROUP BYtablespace_name; 2 Oracle查询表空间大小及每个表所占空间的大小 SELECTtablespace_name,file_id,file_name,round( bytes / ( 1024 …...
Vue3 + Element Plus + TypeScript中el-transfer穿梭框组件使用详解及示例
使用详解 Element Plus 的 el-transfer 组件是一个强大的穿梭框组件,常用于在两个集合之间进行数据转移,如权限分配、数据选择等场景。下面我将详细介绍其用法并提供一个完整示例。 核心特性与用法 基本属性 v-model:绑定右侧列表的值&…...
解决Ubuntu22.04 VMware失败的问题 ubuntu入门之二十八
现象1 打开VMware失败 Ubuntu升级之后打开VMware上报需要安装vmmon和vmnet,点击确认后如下提示 最终上报fail 解决方法 内核升级导致,需要在新内核下重新下载编译安装 查看版本 $ vmware -v VMware Workstation 17.5.1 build-23298084$ lsb_release…...
Redis数据倾斜问题解决
Redis 数据倾斜问题解析与解决方案 什么是 Redis 数据倾斜 Redis 数据倾斜指的是在 Redis 集群中,部分节点存储的数据量或访问量远高于其他节点,导致这些节点负载过高,影响整体性能。 数据倾斜的主要表现 部分节点内存使用率远高于其他节…...
Spring Cloud Gateway 中自定义验证码接口返回 404 的排查与解决
Spring Cloud Gateway 中自定义验证码接口返回 404 的排查与解决 问题背景 在一个基于 Spring Cloud Gateway WebFlux 构建的微服务项目中,新增了一个本地验证码接口 /code,使用函数式路由(RouterFunction)和 Hutool 的 Circle…...
云原生玩法三问:构建自定义开发环境
云原生玩法三问:构建自定义开发环境 引言 临时运维一个古董项目,无文档,无环境,无交接人,俗称三无。 运行设备的环境老,本地环境版本高,ssh不过去。正好最近对 腾讯出品的云原生 cnb 感兴趣&…...
短视频矩阵系统文案创作功能开发实践,定制化开发
在短视频行业迅猛发展的当下,企业和个人创作者为了扩大影响力、提升传播效果,纷纷采用短视频矩阵运营策略,同时管理多个平台、多个账号的内容发布。然而,频繁的文案创作需求让运营者疲于应对,如何高效产出高质量文案成…...
嵌入式学习笔记DAY33(网络编程——TCP)
一、网络架构 C/S (client/server 客户端/服务器):由客户端和服务器端两个部分组成。客户端通常是用户使用的应用程序,负责提供用户界面和交互逻辑 ,接收用户输入,向服务器发送请求,并展示服务…...
android13 app的触摸问题定位分析流程
一、知识点 一般来说,触摸问题都是app层面出问题,我们可以在ViewRootImpl.java添加log的方式定位;如果是touchableRegion的计算问题,就会相对比较麻烦了,需要通过adb shell dumpsys input > input.log指令,且通过打印堆栈的方式,逐步定位问题,并找到修改方案。 问题…...
