当前位置: 首页 > news >正文

数学建模-多元线性回归笔记

数学建模笔记

1.学模型✅
2.看专题论文并复习算法

  • 多元线性回归

    • 无偏性:预测值与真实值非常接近
    • 一致性:样本量无限增大,收敛于待估计参数的真值
    • 如何做:控制核心解释变量和u不相关
  • 四类模型回归系数的解释

    • 截距项不用考虑
    • 一元线性回归:y = a + bx + u
      • x每增加1个单位,y平均变化b个单位
    • 双对数模型:lny = a + blnx + u
      • x每增加1%,y平均变化b%
    • 半对数模型:y = a + blnx
      • x每增加1%,y平均变化b/100个单位
    • 半对数模型:lny = a + bx
      • x每增加1个单位,y平均变化(100b)%
  • 算回归系数要避免多重共线性

  • 客户对产品的关注度可以利用爬虫爬取评价量来表示

  • 多元线性回归 软件:STATA

    • 导入数据
    • 描述性统计:
      • 定量数据:summarize 评价量
        • 右键,复制表格
      • 定性数据:tabulate 变量名,<gen(A)>
        • 数据编辑器
    • 打开do文件,运行一部分
    • 回归数据说明
      • [外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-weXrLv8R-1692215418652)(media/16921742285760/16921799343967.jpg)]
  • STATA回归

    • regress y x1 x2 … xk(默认用OLS:普通最小二乘法)
    • 加入虚拟变量(定类变量)
      • regress y x1 G1 G2 G3 G4
  • 结果分析

[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-JvvgaXYh-1692215418654)(media/16921742285760/16921809215912.jpg)]
[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-1r8mMi44-1692215418654)(media/16921742285760/16921818296992.jpg)]
P值小于0.05, 说明模型在95%的水平下拒绝原假设,通过了联合显著性检验,说明模型是合理的。

[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-OraqDFUn-1692215418655)(media/16921742285760/16921809359312.jpg)]
[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-0iMtwXmo-1692215418656)(media/16921742285760/16921818370769.jpg)]
先看哪些值是显著的,选择置信水平,然后选择变量,开始分析。
选择置信水平为90%,这里有两个变量是显著的,团购价在其他变量不变的情况下,每增加一元,评价量减小-29.77。控制其他变量不变的情况下,分类为羊奶粉的变量比分类为牛奶粉的评价量高14894.

  • 把回归结果保存到word中

    • est store m1
    • reg2docx m1 using m1.docx, replace
    • // *** p<0.01 ** p<0.05 * p<0.1
      [外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-tyVdON0T-1692215418656)(media/16921742285760/16921824817070.jpg)]
    • 加上右下角的标记
  • excel数据透视图会了,数据处理能超过大部分人

  • 回归分为解释型回归和预测型回归。

    • 预测型回归一般才会更看重R^2。
    • 解释型回归更多的关注模型整体显著性以及自变量的统计显著性和经济意义显著性即可。
  • 为了更为精准的研究影响评价量的重要因素(去除量纲的影响),我们可考虑使用标准化回归系数。

  • 对数据进行标准化,就是将原始数据减去它的均数后,再除以该变量的标准差,计算得到新的变量值,新变量构成的回归方程称为标准化回归方程,回归后相应可得到标准化回归系数。

  • 标准化系数的绝对值越大,说明对因变量的影响就越大(只关注显著的回归系数哦)

  • 回归标准化后得到的系数得到影响程度,不标准化得到的系数才能拿来预测。

  • 标准化回归的命令

    • regress y x1 x2 … xk, beta
    • 系数是最后一列
      [外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-S1WGFZYK-1692215418656)(media/16921742285760/16921833650579.jpg)]
  • 结果阅读:在显著的前提下,绝对值要大

  • 归一化后算得的系数会不好解释

[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-gQBRMqSe-1692215443131)(https://cdn.jsdelivr.net/gh/jixiuy/clouding/image-20230817034835596.png)]

这篇文章还没有配置图层利用 PicGo+Typora+Github

相关文章:

数学建模-多元线性回归笔记

数学建模笔记 1.学模型✅ 2.看专题论文并复习算法 多元线性回归 无偏性&#xff1a;预测值与真实值非常接近一致性&#xff1a;样本量无限增大&#xff0c;收敛于待估计参数的真值如何做&#xff1a;控制核心解释变量和u不相关 四类模型回归系数的解释 截距项不用考虑一元线性…...

云安全攻防(十二)之 手动搭建 K8S 环境搭建

手动搭建 K8S 环境搭建 首先前期我们准备好三台 Centos7 机器&#xff0c;配置如下&#xff1a; 主机名IP系统版本k8s-master192.168.41.141Centos7k8s-node1192.168.41.142Centos7k8s-node2192.168.41.143Centos7 前期准备 首先在三台机器上都执行如下的命令 # 关闭防火墙…...

Python学习笔记_基础篇(八)_正则表达式

1. 正则表达式基础 1.1. 简单介绍 正则表达式并不是Python的一部分。正则表达式是用于处理字符串的强大工具&#xff0c;拥有自己独特的语法以及一个独立的处理引擎&#xff0c;效率上可能不如str自带的方法&#xff0c;但功能十分强大。得益于这一点&#xff0c;在提供了正则…...

【洛谷 P5736】【深基7.例2】质数筛 题解(判断质数)

【深基7.例2】质数筛 题目描述 输入 n n n 个不大于 1 0 5 10^5 105 的正整数。要求全部储存在数组中&#xff0c;去除掉不是质数的数字&#xff0c;依次输出剩余的质数。 输入格式 第一行输入一个正整数 n n n&#xff0c;表示整数个数。 第二行输入 n n n 个正整数 …...

C语言好题解析(一)

目录 选择题1选择题2选择题3选择题4编程题一 选择题1 执行下面程序&#xff0c;正确的输出是&#xff08; &#xff09;int x 5, y 7; void swap() {int z;z x;x y;y z; } int main() {int x 3, y 8;swap();printf("%d,%d\n",x, y);return 0; }A: 5,7 B: …...

uniapp微信小程序区分正式版,开发版,体验版

小程序代码区分是正式版&#xff0c;开发版&#xff0c;还是体验版 通常正式和开发环境需要调用不同域名接口&#xff0c;发布时需要手动更换 或者有些东西不想在正式版显示&#xff0c;只在开发版体验版中显示&#xff0c;也需要去手动隐藏 官方没有明确给出判断环境的方法&a…...

更多openEuler镜像加入AWS Marketplace!

自2023年7月openEuler 22.03 LTS SP1正式登陆AWS Marketplace后&#xff0c;openEuler社区一直持续于在AWS上提供更多版本。 目前&#xff0c;openEuler22.03 LTS SP1 ,SP2两个版本及 x86 arm64两种架构的四个镜像均可通过AWS对外提供&#xff0c;且在亚太及欧洲15个Region开放…...

【BASH】回顾与知识点梳理(二十四)

【BASH】回顾与知识点梳理 二十四 二十四. 权限规划和身份切换24.1 主机的细部权限规划&#xff1a;ACL 的使用什么是 ACL 与如何支持启动 ACL如何启动 ACL 24.2 ACL 的设定技巧&#xff1a; getfacl, setfaclsetfacl 指令用法介绍及最简单的『 u:账号:权限 』设定getfacl 指令…...

CSRF

CSRF CSRF&#xff0c;跨站域请求伪造&#xff0c;通常攻击者会伪造一个场景&#xff08;例如一条链接&#xff09;&#xff0c;来诱使用户点击&#xff0c;用户一旦点击&#xff0c;黑客的攻击目的也就达到了&#xff0c;他可以盗用你的身份&#xff0c;以你的名义发送恶意请…...

pyscenic分析:视频教程

我们之前更新过pyscenic的教程&#xff1a;pySCENIC单细胞转录因子分析更新&#xff1a;数据库、软件更新。我们也说过&#xff0c;我们号是放弃R语言版的SCENIC的分析了&#xff0c;因为它比较耗费计算资源和时间&#xff0c;所以我们的单细胞转录因子分析教程都是基于pysceni…...

可视化绘图技巧100篇进阶篇(九)-三维百分比堆积条形图(3D Stacked Percentage Bar Chart)

目录 前言 适用场景 绘图工具及代码实现 帆软 实现思路 方案一&#xff1a;使用计算指标 上传数据 添加组件 生成图表 添加计算字段 生成分区柱形图 生成百分比堆积条形图 美化图表 设置标签 设置颜色 效果查看 PC 端 移动端 方案二&#xff1a;使用自助数…...

js实现将文本转PDF格式并下载到本地

html里面需要引入jspdf.umd.min.js和FileSaver.js jspdf.umd.min.js&#xff1a;https://www.npmjs.com/package/jspdf FileSaver.js&#xff1a;https://download.csdn.net/download/weixin_45791806/87272893?spm1001.2014.3001.5503 同时项目的根部目录也需要引入SimHei.tt…...

Servlet+JDBC实战开发书店项目讲解第四篇:登录实现

ServletJDBC 实战开发书店项目讲解第四篇&#xff1a;登录注册实现 在本篇博客中&#xff0c;我们将继续讲解 ServletJDBC 实战开发书店项目。这次我们将重点讲解如何实现登录和注册功能。 1. 创建数据库表 首先&#xff0c;我们需要在数据库中创建两个表&#xff0c;一个用…...

HarmonyOS NEXT新能力,一站式高效开发HarmonyOS应用

2023年8月6日华为开发者大会2023&#xff08;HDC.Together&#xff09;圆满收官&#xff0c;伴随着HarmonyOS 4的发布&#xff0c;华为向开发者发布了汇聚所有最新开发能力的HarmonyOS NEXT开发者预览版&#xff0c;并分享了围绕“一次开发&#xff0c;多端部署” “可分可合&a…...

【Java从0到1学习】09 正则表达式

1. 正则表达式概述 在编写处理字符串的程序或网页时&#xff0c;经常会有查找符合某些复杂规则的字符串的需要。正则表达式就是用于描述这些规则的工具。换句话说&#xff0c;正则表达式就是记录文本规则的代码。 正则表达式&#xff0c;又称正规表示法、常规表示法&#xff…...

log4j:WARN No appenders could be found for logger问题

本文将idea场景下的使用。 IDEA中&#xff0c;将配置文件命名为log4j.properties&#xff08;该命名才会被自动加载&#xff09;&#xff0c; 并放到某个目录下&#xff08;通常放到resources目录&#xff09;&#xff0c;并在resources上右键&#xff0c;找到Mark Directory a…...

【Java】批量生成条形码-itextpdf

批量生成条形码 Controller ApiOperation("商品一览批量生成商品条形码")PostMapping("/batchGenerateProdBarCode")public void batchGenerateProdBarCode(RequestBody ProductListCondition productListCondition,HttpServletResponse response){import…...

SpringBoot登录、退出、获取用户信息的session处理

1、登录方法&#xff1a;login PostMapping("/user/login")public ResponseVo<User> login(Valid RequestBody UserLoginForm userLoginForm,HttpSession session) {ResponseVo<User> userResponseVo userService.login(userLoginForm.getUsername(), …...

【软件测试】随笔系统测试报告

博主简介&#xff1a;想进大厂的打工人博主主页&#xff1a;xyk:所属专栏: 软件测试 随笔系统采用 SSM 框架前后端分离的方法实现&#xff0c;本文主要针对功能&#xff1a;登录&#xff0c;注册&#xff0c;注销&#xff0c;写随笔&#xff0c;删除随笔&#xff0c;随笔详情页…...

vue中使用html2canvas+jsPDF实现pdf的导出

导入依赖 html2canvas依赖 npm install html2canvasjspdf依赖 npm install jspdfpdf导出 以导出横向&#xff0c;A4大小的pdf为例 规律&#xff1a;1. html2canvas 中&#xff0c;在保持jsPDF中的宽高不变的情况下&#xff0c;设置html2canvas中的 width 和 height 值越小&a…...

LBE-LEX系列工业语音播放器|预警播报器|喇叭蜂鸣器的上位机配置操作说明

LBE-LEX系列工业语音播放器|预警播报器|喇叭蜂鸣器专为工业环境精心打造&#xff0c;完美适配AGV和无人叉车。同时&#xff0c;集成以太网与语音合成技术&#xff0c;为各类高级系统&#xff08;如MES、调度系统、库位管理、立库等&#xff09;提供高效便捷的语音交互体验。 L…...

铭豹扩展坞 USB转网口 突然无法识别解决方法

当 USB 转网口扩展坞在一台笔记本上无法识别,但在其他电脑上正常工作时,问题通常出在笔记本自身或其与扩展坞的兼容性上。以下是系统化的定位思路和排查步骤,帮助你快速找到故障原因: 背景: 一个M-pard(铭豹)扩展坞的网卡突然无法识别了,扩展出来的三个USB接口正常。…...

DockerHub与私有镜像仓库在容器化中的应用与管理

哈喽&#xff0c;大家好&#xff0c;我是左手python&#xff01; Docker Hub的应用与管理 Docker Hub的基本概念与使用方法 Docker Hub是Docker官方提供的一个公共镜像仓库&#xff0c;用户可以在其中找到各种操作系统、软件和应用的镜像。开发者可以通过Docker Hub轻松获取所…...

Python爬虫实战:研究feedparser库相关技术

1. 引言 1.1 研究背景与意义 在当今信息爆炸的时代,互联网上存在着海量的信息资源。RSS(Really Simple Syndication)作为一种标准化的信息聚合技术,被广泛用于网站内容的发布和订阅。通过 RSS,用户可以方便地获取网站更新的内容,而无需频繁访问各个网站。 然而,互联网…...

系统设计 --- MongoDB亿级数据查询优化策略

系统设计 --- MongoDB亿级数据查询分表策略 背景Solution --- 分表 背景 使用audit log实现Audi Trail功能 Audit Trail范围: 六个月数据量: 每秒5-7条audi log&#xff0c;共计7千万 – 1亿条数据需要实现全文检索按照时间倒序因为license问题&#xff0c;不能使用ELK只能使用…...

蓝牙 BLE 扫描面试题大全(2):进阶面试题与实战演练

前文覆盖了 BLE 扫描的基础概念与经典问题蓝牙 BLE 扫描面试题大全(1)&#xff1a;从基础到实战的深度解析-CSDN博客&#xff0c;但实际面试中&#xff0c;企业更关注候选人对复杂场景的应对能力&#xff08;如多设备并发扫描、低功耗与高发现率的平衡&#xff09;和前沿技术的…...

【Go】3、Go语言进阶与依赖管理

前言 本系列文章参考自稀土掘金上的 【字节内部课】公开课&#xff0c;做自我学习总结整理。 Go语言并发编程 Go语言原生支持并发编程&#xff0c;它的核心机制是 Goroutine 协程、Channel 通道&#xff0c;并基于CSP&#xff08;Communicating Sequential Processes&#xff0…...

C++ 基础特性深度解析

目录 引言 一、命名空间&#xff08;namespace&#xff09; C 中的命名空间​ 与 C 语言的对比​ 二、缺省参数​ C 中的缺省参数​ 与 C 语言的对比​ 三、引用&#xff08;reference&#xff09;​ C 中的引用​ 与 C 语言的对比​ 四、inline&#xff08;内联函数…...

【RockeMQ】第2节|RocketMQ快速实战以及核⼼概念详解(二)

升级Dledger高可用集群 一、主从架构的不足与Dledger的定位 主从架构缺陷 数据备份依赖Slave节点&#xff0c;但无自动故障转移能力&#xff0c;Master宕机后需人工切换&#xff0c;期间消息可能无法读取。Slave仅存储数据&#xff0c;无法主动升级为Master响应请求&#xff…...

七、数据库的完整性

七、数据库的完整性 主要内容 7.1 数据库的完整性概述 7.2 实体完整性 7.3 参照完整性 7.4 用户定义的完整性 7.5 触发器 7.6 SQL Server中数据库完整性的实现 7.7 小结 7.1 数据库的完整性概述 数据库完整性的含义 正确性 指数据的合法性 有效性 指数据是否属于所定…...