强化学习:用Python训练一个简单的机器人
一、介绍
强化学习(RL)是一个令人兴奋的研究领域,它使机器能够通过与环境的交互来学习。在这篇博客中,我们将深入到RL的世界,并探索如何使用Python训练一个简单的机器人。在本文结束时,您将对 RL 概念有基本的了解,并能够实现自己的 RL 代理。
设置环境:首先,让我们为机器人设置一个简单的环境。我们将创建一个2D网格世界,机器人需要从起始位置导航到目标位置,同时避开障碍物。
# Define the environment
grid_size = 5
num_actions = 4
start_state = (0, 0)
goal_state = (grid_size - 1, grid_size - 1)
obstacles = [(1, 1), (2, 2), (3, 3)]
二、实现代理
我们将使用Q学习算法,一种流行的RL技术,来训练我们的机器人。Q 学习涉及构建一个表,称为 Q 表,该表将状态操作对映射到相应的 Q 值。这些 Q 值表示代理通过在给定状态下执行特定操作可以获得的预期奖励。
import numpy as np# Initialize the Q-table
q_table = np.zeros((grid_size, grid_size, num_actions))# Set hyperparameters
alpha = 0.1 # Learning rate
gamma = 0.6 # Discount factor
epsilon = 0.1 # Exploration vs. exploitation factor# Define reward and transition functions
def get_reward(state):if state == goal_state:return 10elif state in obstacles:return -10else:return -1def get_next_state(state, action):x, y = stateif action == 0: # Move upnext_state = (max(x - 1, 0), y)elif action == 1: # Move downnext_state = (min(x + 1, grid_size - 1), y)elif action == 2: # Move leftnext_state = (x, max(y - 1, 0))else: # Move rightnext_state = (x, min(y + 1, grid_size - 1))return next_state
三、训练循环
现在,让我们使用 Q 学习算法实现训练循环。代理将探索环境,根据收到的奖励更新Q值,并逐步改进其决策过程。
# Training loop
num_episodes = 1000
for episode in range(num_episodes):state = start_statedone = Falsewhile not done:# Exploration vs. exploitationif np.random.uniform(0, 1) < epsilon:action = np.random.randint(num_actions)else:action = np.argmax(q_table[state])next_state = get_next_state(state, action)reward = get_reward(next_state)# Update Q-valueq_table[state][action] += alpha * (reward + gamma * np.max(q_table[next_state]) - q_table[state][action])state = next_stateif state == goal_state or state in obstacles:done = True
四、测试:
训练完成后,我们可以通过让训练代理使用学习的 Q 值在环境中导航来评估其性能。
# Testing the trained agent
state = start_state
done = Falsewhile not done:action = np.argmax(q_table[state])next_state = get_next_state(state, action)reward = get_reward(next_state)state = next_stateprint(f"Current state: {state}")if state == goal_state or state in obstacles:done = True
五、结论
强化学习是一种强大的技术,它允许机器从与环境的交互中学习。通过在Python中实现Q学习算法,我们训练了一个简单的机器人来导航网格世界。通过探索和开发,机器人学会了根据它获得的奖励做出最佳决策。RL 为训练智能代理以解决复杂问题提供了无限的可能性,并在机器人、游戏、自主系统等领域都有应用。
相关文章:

强化学习:用Python训练一个简单的机器人
一、介绍 强化学习(RL)是一个令人兴奋的研究领域,它使机器能够通过与环境的交互来学习。在这篇博客中,我们将深入到RL的世界,并探索如何使用Python训练一个简单的机器人。在本文结束时,您将对 RL 概念有基本…...

【Docker】Docker使用之容器技术发展史
🎬 博客主页:博主链接 🎥 本文由 M malloc 原创,首发于 CSDN🙉 🎄 学习专栏推荐:LeetCode刷题集 🏅 欢迎点赞 👍 收藏 ⭐留言 📝 如有错误敬请指正࿰…...

postgresql的在windows下的安装
postgresql的在windows下的安装 下载安装步骤超级用户设置密码本地化设置安装信息安装完成 查看postgresql服务pgAdmin的使用打开命令 行工具查询数据库版本 创建数据库 下载 官网地址 https://www.postgresql.org/ 下载页面 https://www.postgresql.org/download/ windows下…...

python 自动化学习(四) pyppeteer 浏览器操作自动化
背景 之前我在工作中涉及到了很多地方都是重复性的页面点点点工作,又因为安全保密原则不开放接口和数据库,只有一个页面来提供点击进行操作,就想着用前面学的自动化来实现,但发现前面学的模拟操作对浏览器来说并没有那么友好&…...

P1009 阶乘之和
[NOIP1998 普及组] 阶乘之和 题目描述 用高精度计算出 S 1 ! 2 ! 3 ! ⋯ n ! S 1! 2! 3! \cdots n! S1!2!3!⋯n!( n ≤ 50 n \le 50 n≤50)。 其中 ! 表示阶乘,定义为 n ! n ( n − 1 ) ( n − 2 ) ⋯ 1 n!n\times (n-1)…...

Linux内核源码剖析之TCP保活机制(KeepAlive)
写在前面: 版本信息: Linux内核2.6.24(大部分centos、ubuntu应该都在3.1。但是2.6的版本比较稳定,后续版本本质变化也不是很大) ipv4 协议 https://blog.csdn.net/ComplexMaze/article/details/124201088 本文使用案例…...

后端 springboot 给 vue 提供参数
前端 /** 发起新增或修改的请求 */requestAddOrEdit(formData) {debuggerif(formData.id undefined) {formData.id }getAction(/material/getNameModelStandard, {standard: this.model.standard,name: this.model.name,model: this.model.model}).then((res) > {if (res …...

《vue3实战》运用radio单选按钮或Checkbox复选框实现单选多选的试卷制作
文章目录 目录 系列文章目录 1.《Vue3实战》使用axios获取文件数据以及走马灯Element plus的运用 2.《Vue3实战》用路由实现跳转登录、退出登录以及路由全局守护 3.《vue3实战》运用Checkbox复选框实现单选多选的试卷展现(本文) 文章目录 前言 radio是什…...

排序算法-冒泡排序(C语言实现)
简介😀 冒泡排序是一种简单但效率较低的排序算法。它重复地扫描待排序元素列表,比较相邻的两个元素,并将顺序错误的元素交换位置,直到整个列表排序完成。 实现🧐 以下内容为本人原创,经过自己整理得出&am…...

星际争霸之小霸王之小蜜蜂(一)
目录 前言 一、安装pygame库 1、pygame库简介 2、在windows系统安装pygame库 二 、搭建游戏框架 1、创建游戏窗口 2、改变窗口颜色 总结 前言 大家应该都看过或者都听说过python神书“大蟒蛇”,上面有一个案例是《外星人入侵》,游戏介绍让我想起了上…...

图数据库_Neo4j基于docker服务版安装_Neo4j Desktop桌面版安装---Neo4j图数据库工作笔记0004
然后我们来看看如何用docker来安装Neo4j community server 首先去执行docker pull neo4j:3.5.22-community 去拉取镜像 然后执行命令就可以安装了 可以用docker ps查看一下 看看暴露了哪些端口 然后再看一下访问一下这个时候,要用IP地址了注意 然后再来看一下安装Desktop 去下…...

docker-compose部署可道云
文章目录 一. Mac1.1 下载源码1.2 部署1.2.1 修改密码部署(可忽略)1.2.2 直接部署 1.3 卸载1.4 访问 二. Win2.1 下载源码2.2 部署2.2.1 修改密码部署(可忽略)2.2.2 直接部署 2.3 卸载 一. Mac 1.1 下载源码 mkdir -p /Users/wanfei/docker-compose && cd /Users/wan…...

Windows上使用FFmpeg实现本地视频推送模拟海康协议rtsp视频流
场景 Nginx搭建RTMP服务器FFmpeg实现海康威视摄像头预览: Nginx搭建RTMP服务器FFmpeg实现海康威视摄像头预览_nginx rtmp 海康摄像头_霸道流氓气质的博客-CSDN博客 上面记录的是使用FFmpeg拉取海康协议摄像头的rtsp流并推流到流媒体服务器。 如果在其它业务场景…...

单片机之从C语言基础到专家编程 - 4 C语言基础 - 4.8 运算符
1.算术运算符 运算符名称备注加法运算符双目运算,a b-减法运算符双目运算,a - b*乘法运算符双目运算,a * b/除法运算符双目运算,a / b%求余运算符双目运算, a % b自增运算符单目运算, a–自减运算符单目运算, a– 2.关系运算符…...

轮腿机器人的PID控制
1 PID介绍 PID(Proportional Integral Derivative)控制系统。其实质是根据输入的偏差值,按比例、积分、微分的函数关系进行运算,运算结果用以输出进行控制。它是在长期的工程实践中总结出来的一套控制方法,实际运行经…...

ChatGPT爆火,会给教育带来什么样的影响或者冲击?
近来,人工智能聊天机器人ChatGPT连上热搜,火爆全网。ChatGPT拥有强大的信息整合能力、自然语言处理能力,可谓是“上知天文,下知地理”,而且还能根据要求进行聊天、撰写文章等。 ChatGPT一经推出,便迅速在社…...

Servlet+JDBC实战开发书店项目讲解第三篇:商品查询实现
ServletJDBC实战开发书店项目讲解第三篇:商品查询实现 本篇博客将介绍如何在ServletJDBC实战开发书店项目中实现商品查询功能。我们将从设计数据库表结构和实体类开始,一步一步详细讲解代码实现过程,包括前端页面的设计和后端Servlet代码的编…...

爬虫逆向实战(十七)--某某丁简历登录
一、数据接口分析 主页地址:某某丁简历 1、抓包 通过抓包可以发现数据接口是submit 2、判断是否有加密参数 请求参数是否加密? 通过查看“载荷”模块可以发现有一个enPassword加密参数 请求头是否加密? 通过查看请求头可以发现有一个To…...

《安富莱嵌入式周报》第320期:键盘敲击声解码, 军工级boot设计,开源CNC运动控制器,C语言设计笔记,开源GPS车辆跟踪器,一键生成RTOS任务链表
周报汇总地址:嵌入式周报 - uCOS & uCGUI & emWin & embOS & TouchGFX & ThreadX - 硬汉嵌入式论坛 - Powered by Discuz! 视频版: https://www.bilibili.com/video/BV1Cr4y1d7Mp/ 《安富莱嵌入式周报》第320期:键盘敲击…...

DRF 缓存
应用环境 django4.2.3 ,python3.10 由于对于服务而言,有些数据查询起来比较费时,所以,对于有些数据,我们需要将其缓存。 最近做了一个服务,用的时 DRF 的架构,刚好涉及缓存,特此记…...

Collada .dae文件格式简明教程【3D】
当你从互联网下载 3D 模型时,可能会在格式列表中看到 .dae 格式。 它是什么? 推荐:用 NSDT编辑器 快速搭建可编程3D场景。 1、Collada DAE概述 COLLADA是COLLAborative Design Activity(中文:协作设计活动)…...

在K8s上处理nginx
基本说明 创建一个名为ssl的TLS类型的Secret对象,用于存储证书和密钥信息。 kubectl create secret tls ssl --certserver.crt --keyserver.key配置Nginx的events块,设置worker连接数为1024。 events {worker_connections 1024; }配置Nginx的http块&a…...

嵌入式:ARM Day4
一、自己编写代码实现三盏灯点亮 源码: .text .global _start _start: 进行一次初始化bl RCC_INITbl LED1_INITbl LED2_INITbl LED3_INITb looploop: 循环开关灯bl LED1_ONbl delay_1sbl LED1_OFFbl delay_1sbl LED2_ONbl delay_1sbl LED2_OFFbl delay_1sbl…...

SpringBoot案例-员工管理-分页条件查询
根据页面原型,明确需求 页面原型 需求 查看接口文档 接口文档的链接如下: 【腾讯文档】SpringBoot案例所需文档 https://docs.qq.com/doc/DUkRiTWVaUmFVck9N 思路分析 分页条件查询就时将条件查询的结果进行分页展示,由于有的条件可能设…...

python控制obs实现无缝切换场景!obs-websocket-py
前言 最近一直在研究孪生数字人wav2lip。目前成果可直接输入高清嘴型,2070显卡1分钟音频2.6分钟输出。在直播逻辑上可以做到1比1.3这样,所以现在开始研究直播。在逻辑上涉及到了无缝切换,看到csdn上有一篇文章还要vip解锁。。。那自己研究吧…...

Vue3实现图片懒加载及自定义懒加载指令
Vue3实现图片懒加载及自定义懒加载指令 前言1.使用vue3-lazyload插件2.自定义v-lazy懒加载指令2.1 使用VueUse2.2 使用IntersectionObserver 前言 图片懒加载是一种常见性能优化的方式,它只去加载可视区域图片,而不是在网页加载完毕后就立即加载所有图片…...

LeetCode150道面试经典题-- 环形链表(简单)
1.题目 给你一个链表的头节点 head ,判断链表中是否有环。 如果链表中有某个节点,可以通过连续跟踪 next 指针再次到达,则链表中存在环。 为了表示给定链表中的环,评测系统内部使用整数 pos 来表示链表尾连接到链表中的位置&…...

音视频学习-音视频基础
文章目录 一、 音视频录制原理二、音视频播放原理三、图像基础概念1.像素2.分辨率3.位深4.帧率5.码率6.Stride跨距 四、RGB、YUV1.RGB2.YUV1. 4:4:4格式2. 4:2:2格式3. 4:2:0格式4. 4:2:0数据格式对比 3.RGB和YUV的转换4.YUV Stride对齐问题 五、视频的主要概念1.基本概念2.I P…...

asp.net core webapi如何执行周期性任务
使用Api执行周期性任务 第一种,无图形化界面1.新建类,继承IJob,在实现的方法种书写需要周期性执行的事件。2.编写方法类,定义事件执行方式3.在启动方法中,进行设置,.net 6中在program.cs的Main方法中&#…...

快速搭建图书商城小程序的简易流程与优势
很多人喜欢阅读电子书,又有很多人依旧喜欢实体书,而实体书店拥有一个图书商城小程序便成为了满足用户需求的理想选择。如果您也想进入这一充满潜力的领域,但担心开发难度和复杂流程,别担心!您能做到快速搭建一个专业、…...