Redis-分布式锁!
分布式锁,顾名思义,分布式锁就是分布式场景下的锁,比如多台不同机器上的进程,去竞争同一项资源,就是分布式锁。
分布式锁特性
互斥性:锁的目的是获取资源的使用权,所以只让一个竞争者持有锁,这一点要尽可能保证;
安全性:避免锁因为异常永远不被释放。当一个竞争者在持有锁期间内,由于意外崩溃而导致未能主动解锁,其持有的锁也能够被兜底释放,并保证后续其它竞争者也能加锁;
对称性:同一个锁,加锁和解锁必须是同一个竞争者。不能把其他竞争者持有的锁给释放了。
可靠性:需要有一定程度的异常处理能力、容灾能力。
分布式锁的实现
1.直接用Redis的setnx命令
首先,当然是搭建一个最简单的实现方式, 直接用Redis的setnx命令, 这个命令的语法是: setnx key value如果key不存在,则会将key设置为value,并返回1;如果key存在,不会有任务影响,返回0。
基于这个特性,我们就可以用setnx实现加锁的目的:通过setnx加锁,加锁之后其他服务无法加锁,用完之后,再通过delete解锁
就是这个获取锁的过程就是setnx的过程 如果有锁了 那就会返回0 如果没锁 就会把key设置为value然后释放锁就会delete

2.支持过期时间
最简化版本有一个问题:如果获取锁的服务挂掉了,那么锁就一直得不到释放,就像石沉大海,查无音信。所以,我们需要一个超时来兜底。
Redis中有expire命令,用来设置一个key的超时时间。 但是setnx和expire不具备 原子性,如果setnx获取锁之后,服务挂掉(还没来的及设置时间),依旧是泥牛入海。
很自然,我们会想到,set和expire, 有没有原子操作?
当然有,Redis早就考虑到了这种场景,推出了如下执行语句: set key value nx ex seconds nx表示具备setnx特定,ex表示增加了过期时间,最后一个参数就是过期时间的值。
他把set和expire合成了一个原子操作
这个过期和释放锁是并列的 就是主动释放锁和过期都会delete
3.加上Owner
我们来试想一下如下场景:服务A获取了锁,由于业务流程比较长,或者网络延迟、GC卡顿等原因,导致锁过期,而业务还会继续进行。这时候,业务B已经拿到了锁,准备去执行,这个时候服务A恢复过来并做完了业务,就会释放锁,而B却还在继续执行。
在真实的分布式场景中,可能存在几十个竞争者,那么上述情况发生概率就很高,导致同一份资源频繁被不同竞争者同时访问,分布式锁也就失去了意义。
基于这个场景,我们可以发现,问题关键在于,竞争者可以释放其他人的锁。(也就是说 只能这个锁持有者自己释放了锁才行 就是这个delete过程 只能自己来删除 而不能其他线程删除)那么在异常情况下,就会出现问题,所以我们可以进一步给出解决方案: 分布式锁需要满足谁申请谁释放原则,不能释放别人的锁,也就是说,分布式锁,是要有归属的。
我们获取锁之前不是会有一个delete释放锁的过程吗? 我们让其他线程没法执行这个delete操作 只有我锁持有者可以delete
具体步骤 释放前先检测是否是持有者要delete 然后返回检查结果 然后再根据结果进行操作
4.引入LUA
释放前先检测是否是持有者要delete 然后返回检查结果 然后再根据结果进行操作
这三步不是原子的
我们来看 检测和返回结果之间的间隙
这个同时锁过期了
检测 这锁过期释放了锁 且有其他客户端获取到了锁 然后返回结果 删除锁
这个时候 已经判断完了它是自己的锁 他就会删除这个锁
这就造成了锁的误删
然后LUA给这仨操作合成原子操作了
(其实owner )
分布式锁的可靠性靠什么保证
主从容灾
emmm 就是主库寄了 用从库顶一顶先
但是主从切换,需要人工参与,会提高人力成本。不过Redis已经有成熟的解决方案,也就是哨兵模式,可以灵活自动切换,不再需要人工介入。

一堆箭头乱七八糟的 描述一下 每个哨兵会监视其他两个哨兵的 同时还会监视主库和两个从库
通过增加从节点的方式,虽然一定程度解决了单点的容灾问题,但并不是尽善尽美的,由于同步有时延,Slave可能会损失掉部分数据,分布式锁可能失效,这就会发生短暂的多机获取到执行权限。
更妥善的方法
多机部署
如果对一致性的要求高一些, 可以尝试多机部署,比如Redis的RedLock, 大概的思路就是多个机器,通常是奇数个,达到一半以上同意加锁才算加锁成功,这样,可靠性会向ETCD靠近。
现在假设有5个Redis主节点,基本保证它们不会同时宕掉,获取锁和释放锁的过程中,客户端会执行以下操作:
1.向5个Redis申请加锁;
2.只要超过一半,也就是3个Redis返回成功,那么就是获取到了锁。如果超过一半失败, 需要向每个Redis发送解锁命令;
3.由于向5个Redis发送请求,会有一定时耗,所以锁剩余持有时间,需要减去请求时间。这个可以作为判断依据,如果剩余时间已经为0,那么也是获取锁失败:
4.使用完成之后,向5个Redis发送解锁请求。
这种模式的好处在于,如果挂了2台Redis,整个集群还是可用的,给了运维更多时间来修复。
(这种方法太重了 业务很少会用的到)
分布式系统三大困境
简称NPC
这种模式的好处在于,如果挂了2台Redis,整个集群还是可用的,给了运维更多时间来修复。
另外,多说一句,单点Redis的所有手段,这种多机模式都可以使用,比如为每个节点配置哨兵模式,由于加锁是
-半以上同意就成功,那么如果单个节点进行了主从切换,单个节点数据的丢失,就不会让锁失效了。这样增强了
可靠性。
N:Network Delay (网络延迟)当分布式锁获得返回包的时间过长,此时可能虽然加锁成功,但是已经时过境迁,锁可能很快过期。RedLock算 了做了些考量,也就是前面所说的锁剩余持有时间,需要减去请求时间,如此一来,就可以一定程度解决网络延迟的问题。
P: Process Pause (进程暂停)比如发生GC,获取锁之后GC了,处于GC执行中,然后锁超时。其他锁获取,这种情况几乎无解。这时候GC回来了,那么两个进程就获取到了同一个分布式锁。
也许你会说,在GC回来之后,可以再去查一次啊?
这里有两个问题,首先你怎么知道GC回来了?这个可以在做业务之前,通过时间,进行一个粗略判断,但也是很吃场景经验的;第二,如果你判断的时候是ok的,但是判断完GC了呢?这点RedLock是无法解决的。
C: Clock Drift (时钟漂移)
如果竞争者A,获得了RedLock,在5台分布式机器上都加上锁。为了方便分析,我们直接假设5台机器都发生了时钟漂移,锁瞬间过期了。这时候竞争者B拿到了锁,此时A和B拿到了相同的执行权限。
根据上述的分析.可以看出,RedLock也不能扛住NPC的挑战,因此,单单从分布式锁本身出发,完全可靠是不可能的。要实现一个相对可靠的分布式锁机制,还是需要和业务的配合,业务本身要幂等可重入,这样的设计可以省却很多麻烦。
相关文章:
Redis-分布式锁!
分布式锁,顾名思义,分布式锁就是分布式场景下的锁,比如多台不同机器上的进程,去竞争同一项资源,就是分布式锁。 分布式锁特性 互斥性:锁的目的是获取资源的使用权,所以只让一个竞争者持有锁,这…...
Unity如何把游戏导出成手机安装包
文章目录 前言使用环境步骤添加场景构建APK 前言 本文章主要演示了,如何将制作好的游戏,导出成APK,安装到手机上。 使用环境 Unity2022。 步骤 首先打开你的项目,然后选择菜单栏的“File” > “Build Settings…”…...
使用爱校对软件保证公文材料质量的关键步骤
在日常的公文处理中,保证材料质量是每个企业和机构都追求的目标。而要实现这个目标,使用正确的工具是关键。爱校对软件正是这样一款专业的校对工具,它可以帮助我们保证公文材料的质量。接下来,让我们一起来看看使用爱校对软件保证…...
Spring Data Elasticsearch 的简单使用
目录 一、简介 二、配置 三、映射 四、 常用方法 五、操作(重点) 1、对索引表的操作 2、对文档的操作(重点) (1)、添加文档 (2)、删除文档 (3)、查询…...
2024」预备研究生mem-角平分线定理中线定理垂线定理、射影定理
一、角平分线定理 二、中线定理 三、垂线定理、射影定理 垂线定理 射影定理: 四、课后题...
nginx部署时http接口正常,ws接口404
可以这么配置 map $http_upgrade $connection_upgrade {default upgrade; close; }upstream wsbackend{server ip1:port1;server ip2:port2;keepalive 1000; }server {listen 20038;location /{ proxy_http_version 1.1;proxy_pass http://wsbackend;proxy_redirect off;proxy…...
数学建模的概念和学习方法(什么是数学建模)
一、初步认识数学建模 数学建模是将数学方法和技巧应用于实际问题的过程。它涉及使用数学模型来描述和分析现实世界中的现象、系统或过程,并通过数学分析和计算来预测、优化或解决问题。数学建模可以应用于各种领域,包括自然科学、工程、经济学、环境科学…...
ChatGPT在智能安全监测和入侵检测中的应用如何?
ChatGPT在智能安全监测和入侵检测领域具有潜在的应用价值。虽然ChatGPT主要是一个基于自然语言处理的模型,但结合其他技术和领域专业知识,它可以用于生成和分析文本数据,提供实时安全警报、威胁情报等,从而在安全监测和入侵检测方…...
智能数据建模软件DTEmpower 2023R2新版本功能介绍
DTEmpower是由天洑软件自主研发的一款通用的智能数据建模软件,致力于帮助工程师及工科专业学生,利用工业领域中的仿真、试验、测量等各类数据进行挖掘分析,建立高质量的数据模型,实现快速设计评估、实时仿真预测、系统参数预警、设…...
BDA初级分析——认识SQL,认识基础语法
一、认识SQL SQL作为实用技能,热度高、应用广泛 在对数据分析人员的调查中SQL长期作为热度排名第-一的编程语言超过Python和R SQL:易学易用,高效强大的语言 SQL:Structured Query Language 结构化查询语言 SQL:易学…...
Qt应用开发(基础篇)——MDI窗口 QMdiArea QMdiSubWindow
一、前言 QMdiArea类继承于QAbstractScrollArea,QAbstractScrollArea继承于QFrame,是Qt用来显示MDI窗口的部件。 滚屏区域基类 QAbstractScrollAreahttps://blog.csdn.net/u014491932/article/details/132245486 框架类 QFramehttps://blog.csdn.net/u01…...
图片转换成pdf格式?这几种转换格式方法了解一下
图片转换成pdf格式?将图片转换成PDF格式的好处有很多。首先,PDF格式具有通用性,可以在几乎任何设备上查看。其次,PDF格式可以更好地保护文件,防止被篡改或者复制。此外,PDF格式还可以更好地压缩文件大小&am…...
thingsboard编译安装踩坑记录
thingsboard编译安装踩坑记录 一、编译:二、运行 朋友的thingsboard没人维护,要装新的服务器,啥文档也没有,就让参考官网的文档,版本也比较老3.2.2的,拿过来试了试记录下踩坑的地方。 一、编译:…...
汇编语言例子集合
本人早酷爱汇编语言,曾经以自己能直接执行和操作机器码而自豪不已。下面列出一些电脑隐藏角落里的汇编语言例子程序。后续发现整理后会进一步添加完善。 汇编语言在windows上的bmp文件浏览器。 使用win32汇编编写。 下载地址:https://download.csdn.net/…...
强化学习:用Python训练一个简单的机器人
一、介绍 强化学习(RL)是一个令人兴奋的研究领域,它使机器能够通过与环境的交互来学习。在这篇博客中,我们将深入到RL的世界,并探索如何使用Python训练一个简单的机器人。在本文结束时,您将对 RL 概念有基本…...
【Docker】Docker使用之容器技术发展史
🎬 博客主页:博主链接 🎥 本文由 M malloc 原创,首发于 CSDN🙉 🎄 学习专栏推荐:LeetCode刷题集 🏅 欢迎点赞 👍 收藏 ⭐留言 📝 如有错误敬请指正࿰…...
postgresql的在windows下的安装
postgresql的在windows下的安装 下载安装步骤超级用户设置密码本地化设置安装信息安装完成 查看postgresql服务pgAdmin的使用打开命令 行工具查询数据库版本 创建数据库 下载 官网地址 https://www.postgresql.org/ 下载页面 https://www.postgresql.org/download/ windows下…...
python 自动化学习(四) pyppeteer 浏览器操作自动化
背景 之前我在工作中涉及到了很多地方都是重复性的页面点点点工作,又因为安全保密原则不开放接口和数据库,只有一个页面来提供点击进行操作,就想着用前面学的自动化来实现,但发现前面学的模拟操作对浏览器来说并没有那么友好&…...
P1009 阶乘之和
[NOIP1998 普及组] 阶乘之和 题目描述 用高精度计算出 S 1 ! 2 ! 3 ! ⋯ n ! S 1! 2! 3! \cdots n! S1!2!3!⋯n!( n ≤ 50 n \le 50 n≤50)。 其中 ! 表示阶乘,定义为 n ! n ( n − 1 ) ( n − 2 ) ⋯ 1 n!n\times (n-1)…...
Linux内核源码剖析之TCP保活机制(KeepAlive)
写在前面: 版本信息: Linux内核2.6.24(大部分centos、ubuntu应该都在3.1。但是2.6的版本比较稳定,后续版本本质变化也不是很大) ipv4 协议 https://blog.csdn.net/ComplexMaze/article/details/124201088 本文使用案例…...
Zustand 状态管理库:极简而强大的解决方案
Zustand 是一个轻量级、快速和可扩展的状态管理库,特别适合 React 应用。它以简洁的 API 和高效的性能解决了 Redux 等状态管理方案中的繁琐问题。 核心优势对比 基本使用指南 1. 创建 Store // store.js import create from zustandconst useStore create((set)…...
UR 协作机器人「三剑客」:精密轻量担当(UR7e)、全能协作主力(UR12e)、重型任务专家(UR15)
UR协作机器人正以其卓越性能在现代制造业自动化中扮演重要角色。UR7e、UR12e和UR15通过创新技术和精准设计满足了不同行业的多样化需求。其中,UR15以其速度、精度及人工智能准备能力成为自动化领域的重要突破。UR7e和UR12e则在负载规格和市场定位上不断优化…...
OPenCV CUDA模块图像处理-----对图像执行 均值漂移滤波(Mean Shift Filtering)函数meanShiftFiltering()
操作系统:ubuntu22.04 OpenCV版本:OpenCV4.9 IDE:Visual Studio Code 编程语言:C11 算法描述 在 GPU 上对图像执行 均值漂移滤波(Mean Shift Filtering),用于图像分割或平滑处理。 该函数将输入图像中的…...
【Redis】笔记|第8节|大厂高并发缓存架构实战与优化
缓存架构 代码结构 代码详情 功能点: 多级缓存,先查本地缓存,再查Redis,最后才查数据库热点数据重建逻辑使用分布式锁,二次查询更新缓存采用读写锁提升性能采用Redis的发布订阅机制通知所有实例更新本地缓存适用读多…...
免费数学几何作图web平台
光锐软件免费数学工具,maths,数学制图,数学作图,几何作图,几何,AR开发,AR教育,增强现实,软件公司,XR,MR,VR,虚拟仿真,虚拟现实,混合现实,教育科技产品,职业模拟培训,高保真VR场景,结构互动课件,元宇宙http://xaglare.c…...
基于Springboot+Vue的办公管理系统
角色: 管理员、员工 技术: 后端: SpringBoot, Vue2, MySQL, Mybatis-Plus 前端: Vue2, Element-UI, Axios, Echarts, Vue-Router 核心功能: 该办公管理系统是一个综合性的企业内部管理平台,旨在提升企业运营效率和员工管理水…...
pikachu靶场通关笔记19 SQL注入02-字符型注入(GET)
目录 一、SQL注入 二、字符型SQL注入 三、字符型注入与数字型注入 四、源码分析 五、渗透实战 1、渗透准备 2、SQL注入探测 (1)输入单引号 (2)万能注入语句 3、获取回显列orderby 4、获取数据库名database 5、获取表名…...
论文阅读笔记——Muffin: Testing Deep Learning Libraries via Neural Architecture Fuzzing
Muffin 论文 现有方法 CRADLE 和 LEMON,依赖模型推理阶段输出进行差分测试,但在训练阶段是不可行的,因为训练阶段直到最后才有固定输出,中间过程是不断变化的。API 库覆盖低,因为各个 API 都是在各种具体场景下使用。…...
实战设计模式之模板方法模式
概述 模板方法模式定义了一个操作中的算法骨架,并将某些步骤延迟到子类中实现。模板方法使得子类可以在不改变算法结构的前提下,重新定义算法中的某些步骤。简单来说,就是在一个方法中定义了要执行的步骤顺序或算法框架,但允许子类…...
goreplay
1.github地址 https://github.com/buger/goreplay 2.简单介绍 GoReplay 是一个开源的网络监控工具,可以记录用户的实时流量并将其用于镜像、负载测试、监控和详细分析。 3.出现背景 随着应用程序的增长,测试它所需的工作量也会呈指数级增长。GoRepl…...
