数据分析 | 随机森林如何确定参数空间的搜索范围
1. 随机森林超参数
极其重要的三个超参数是必须要调整的,一般再加上两到三个其他超参数进行优化即可。

2. 学习曲线确定n_estimators搜索范围
首先导入必要的库,使用sklearn自带的房价预测数据集:
import numpy as np
import pandas as pd
from sklearn.model_selection import train_test_split
from sklearn.datasets import fetch_california_housing
from sklearn.ensemble import RandomForestRegressor
from sklearn.model_selection import KFold
from sklearn.model_selection import cross_validate
import matplotlib.pyplot as plt
housing = fetch_california_housing()
# 特征数据
X = housing.data[:, [0, 1, 2, 3, 4, 5, 6, 7]]
# 目标变量(房价)
y = housing.target
初始化以及5折交叉验证计算RMSE:
trainRMSE = np.array([])
testRMSE = np.array([])
trainSTD = np.array([])
testSTD = np.array([])Option = range(5,101,5)
for n_estimators in Option :reg_f = RandomForestRegressor(n_estimators=n_estimators, random_state=1412)# 交叉验证输出结果cv = KFold(n_splits=5,shuffle=True,random_state=1412)result_f = cross_validate(reg_f,X,y,cv=cv,scoring="neg_mean_squared_error",return_train_score=True,n_jobs=-1)# 根据输出的MSE进行RMSE计算train = abs(result_f["train_score"])**0.5test = abs(result_f["test_score"])**0.5trainRMSE = np.append(trainRMSE,train.mean())testRMSE = np.append(testRMSE,test.mean())trainSTD = np.append(trainSTD,train.std())testSTD = np.append(testSTD,test.std())
定义绘图函数:
def plotCVresult(Option,trainRMSE,testRMSE,trainSTD,testSTD) :xaxis = Option# RMSEplt.plot(xaxis, trainRMSE,color='k',label='RandomForestTrain')plt.plot(xaxis, testRMSE, color='red', label='RandomForestTest')# 将标准差围绕在RMSE旁边,区间越大表示模型越不稳定plt.plot(xaxis, trainRMSE + trainSTD, color='k', linestyle='dotted')plt.plot(xaxis, trainRMSE - trainSTD, color='k', linestyle='dotted')plt.plot(xaxis, testRMSE + testSTD, color='red', linestyle='dotted')plt.plot(xaxis, testRMSE - testSTD, color='red', linestyle='dotted')plt.xticks([*xaxis])plt.legend(loc=1)plt.xlabel('n_estimators')plt.ylabel('RMSE')plt.title('Learning Curve')plt.show()plotCVresult(Option,trainRMSE,testRMSE,trainSTD,testSTD)
输出结果如下:

3. 使用Tree模块判断max_depth搜索范围
只需在输出的最小值和最大值之间进行搜索即可。
reg_f = RandomForestRegressor(n_estimators=100,random_state=1412)
reg_f = reg_f.fit(X,y)
d = pd.Series([],dtype="int64")
for idx,t in enumerate(reg_f.estimators_) :d[idx] = t.tree_.max_depth
print('决策树的最大深度的最小值为:',d.min())
print('决策树的最大深度的最大值为:',d.max())
输出结果为:

4. 使用Tree模块判断min_weight_fraction_leaf搜索范围
reg_f = RandomForestRegressor(n_estimators=100,random_state=1412)
reg_f = reg_f.fit(X,y)
n = pd.Series([],dtype="int64")
for idx,t in enumerate(reg_f.estimators_) :n[idx] = t.tree_.weighted_n_node_samples
meann = np.zeros(20)
for i in range(0,20) :meann[i] = n[i].mean()
print('决策树分枝所需最小样本权重的最小值为:',meann.min())
print('决策树分枝所需最小样本权重的最大值为:',meann.max())
print('决策树分枝所需最小样本权重的平均值为:',meann.mean())
输出结果为:

5. 使用Tree模块判断min_sample_split搜索范围
reg_f = RandomForestRegressor(n_estimators=20,random_state=1412)
reg_f = reg_f.fit(X,y)
s = pd.Series([],dtype="int64")
for idx,t in enumerate(reg_f.estimators_) :s[idx] = t.tree_.n_node_samples
meann = np.zeros(20)
for i in range(0,20) :meann[i] = s[i].mean()
print('决策树需要最小样本的最小值为:',meann.min())
print('决策树需要最小样本的最大值为:',meann.max())
print('决策树需要最小样本的平均值为:',meann.mean())
输出结果为:

相关文章:
数据分析 | 随机森林如何确定参数空间的搜索范围
1. 随机森林超参数 极其重要的三个超参数是必须要调整的,一般再加上两到三个其他超参数进行优化即可。 2. 学习曲线确定n_estimators搜索范围 首先导入必要的库,使用sklearn自带的房价预测数据集: import numpy as np import pandas as pd f…...
5G+AI数字化智能工厂建设解决方案PPT
导读:原文《5GAI数字化智能工厂建设解决方案》(获取来源见文尾),本文精选其中精华及架构部分,逻辑清晰、内容完整,为快速形成售前方案提供参考。数字化智能工厂定义 智能基础架构协同框架 - 端、边、云、网…...
Windows配置编译ffmpeg +音视频地址
Windows配置MinGW及MinGW-make使用实例 https://blog.csdn.net/Henoiiy/article/details/122550618 ffmpeg安装遇错:nasm/yasm not found or too old. Use --disable-x86asm for a crippled build. https://blog.csdn.net/sayyy/article/details/124337834https://…...
C语言 常用工具型API --------system()
函数名: system() 用 法: int system(char *command); 原理: 加载一个子进程去执行指定的程序,而想Linux命令基本都是一个单独的进程实现的,所以你所掌握的Linux命令越多,该函数功…...
车规级半导体分类(汽车芯片介绍)
车规级半导体,也被称为“汽车芯片”,主要应用于车辆控制装置、车载监控系统和车载电子控制装置等领域。这些半导体器件主要分布在车体控制模块上,以及车载信息娱乐系统方面,包括动力传动综合控制系统、主动安全系统和高级辅助驾驶…...
opencv图像轮廓检测
效果展示: 代码部分: import cv2 import numpy as np img cv2.imread(C:/Users/ibe/Desktop/picture.PNG,cv2.IMREAD_UNCHANGED) # 类型转换 img cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)# 结构元 kernel cv2.getStructuringElement(cv2.MORPH_REC…...
诚迈科技荣膺小米“最佳供应商奖”
近日,诚迈科技受邀参加小米战略合作伙伴HBR总结会。诚迈科技以尽职尽责的合作态度、精益求精的交付质量荣膺小米公司颁发的最佳供应商奖,其性能测试团队荣获优秀团队奖。 诚迈科技与小米在手机终端方向一直保持着密切的合作关系,涉及系统框架…...
分布式 - 消息队列Kafka:Kafka 消费者的消费位移
文章目录 01. Kafka 分区位移02. Kafka 消费位移03. kafka 消费位移的作用04. Kafka 消费位移的提交05. kafka 消费位移的存储位置06. Kafka 消费位移与消费者提交的位移07. kafka 消费位移的提交时机08. Kafka 维护消费状态跟踪的方法 01. Kafka 分区位移 对于Kafka中的分区而…...
H3C QoS打标签和限速配置案例
EF:快速转发 AF:确保转发 CS:给各种协议用的 BE:默认标记(尽力而为) VSR-88-2 出口路由配置: [H3C]dis current-configuration version 7.1.075, ESS 8305 vlan 1 traffic classifier vlan10 operator and if-match a…...
带curl的docker镜像image
带curl的docker镜像,便于k8s中查找问题,确认容器内部是否可用。 用于测试网络的工具,带有curl nslookup等命令 镜像名docker.io/appropriate/curl 测试命令docker run --rm -it docker.io/appropriate/curl /bin/sh 已测试可用 用于测试网…...
Hadoop数据迁移distcp
Hadoop数据迁移distcp 准备工作 确认源集群(a),目标集群(b)确认a集群的主节点和b集群的主节点确认两个集群的网络相通确认迁移模式(全量迁移还是增量迁移),这里选择全量迁移 迁移文件 迁移t…...
QT-Mysql数据库图形化接口
QT sql mysqloper.h qsqlrelationaltablemodelview.h /************************************************************************* 接口描述:Mysql数据库图形化接口 拟制: 接口版本:V1.0 时间:20230727 说明:支…...
LeetCode150道面试经典题-- 合并两个有序链表(简单)
1.题目 将两个升序链表合并为一个新的 升序 链表并返回。新链表是通过拼接给定的两个链表的所有节点组成的。 2.示例 示例 1: 输入:l1 [1,2,4], l2 [1,3,4] 输出:[1,1,2,3,4,4] 示例 2: 输入:l1 [], l2 [] 输…...
GitHub 如何部署写好的H5静态页面
感谢粉皮zu的私信,又有素材写笔记了。(●’◡’●) 刚好记录一下我示例代码的GitHub部署配置,以便于后期追加仓库。 效果 环境 gitwin 步骤 第一步 新建仓库 第二步 拉取代码 将仓库clone到本地 git clone 地址第三步 部署文件 新建.github\workflo…...
SharkTeam:Worldcoin运营数据及业务安全分析
Worldcoin的白皮书中声明,Worldcoin旨在构建一个连接全球人类的新型数字经济系统,由OpenAI创始人Sam Altman于2020年发起。通过区块链技术在Web3世界中实现更加公平、开放和包容的经济体系,并将所有权赋予每个人。并且希望让全世界每一个人都…...
C语言编程练习
考点:【字符串】【数组】 题目1. 打印X 题目描述 输入一个正整数N, 你需要按样例的方式返回一个字符串列表。 1≤N≤15。 样例 1: 输入:1 输出:[“X”] X样例 2: 输入:2 [“XX”, “XX”] …...
vue入门(增查改!)
<template><div><!-- 搜索栏 --><el-card id"search"><el-row><el-col :span"20"><el-input v-model"searchModel.name" placeholder"根据名字查询"></el-input><el-input v-mode…...
移动端身份证识别技术的应用,告别手动录入证件信息
随着移动互联网的的发展,越来越多的公司都推出了自己的移动APP,这些APP多数都涉及到个人身份证信息的输入认证(即实名认证),如果手动去输入身份证号码和姓名,速度非常慢,且用户体验非常差。为了…...
网络通信原理TCP字段解析(第四十七课)
字段含义Source Port(源端口号)源端口,标识哪...
uniapp微信小程序消息订阅快速上手
一、微信公众平台小程序开通消息订阅并设置模板 这边的模板id和详细内容后续前后端需要使用 二、uniapp前端 需要是一个button触发 js: wx.getSetting({success(res){console.log(res)if(res.authSetting[scope.subscribeMessage]){// 业务逻辑}else{uni.request…...
【网络】每天掌握一个Linux命令 - iftop
在Linux系统中,iftop是网络管理的得力助手,能实时监控网络流量、连接情况等,帮助排查网络异常。接下来从多方面详细介绍它。 目录 【网络】每天掌握一个Linux命令 - iftop工具概述安装方式核心功能基础用法进阶操作实战案例面试题场景生产场景…...
基于FPGA的PID算法学习———实现PID比例控制算法
基于FPGA的PID算法学习 前言一、PID算法分析二、PID仿真分析1. PID代码2.PI代码3.P代码4.顶层5.测试文件6.仿真波形 总结 前言 学习内容:参考网站: PID算法控制 PID即:Proportional(比例)、Integral(积分&…...
WEB3全栈开发——面试专业技能点P2智能合约开发(Solidity)
一、Solidity合约开发 下面是 Solidity 合约开发 的概念、代码示例及讲解,适合用作学习或写简历项目背景说明。 🧠 一、概念简介:Solidity 合约开发 Solidity 是一种专门为 以太坊(Ethereum)平台编写智能合约的高级编…...
React---day11
14.4 react-redux第三方库 提供connect、thunk之类的函数 以获取一个banner数据为例子 store: 我们在使用异步的时候理应是要使用中间件的,但是configureStore 已经自动集成了 redux-thunk,注意action里面要返回函数 import { configureS…...
用机器学习破解新能源领域的“弃风”难题
音乐发烧友深有体会,玩音乐的本质就是玩电网。火电声音偏暖,水电偏冷,风电偏空旷。至于太阳能发的电,则略显朦胧和单薄。 不知你是否有感觉,近两年家里的音响声音越来越冷,听起来越来越单薄? —…...
七、数据库的完整性
七、数据库的完整性 主要内容 7.1 数据库的完整性概述 7.2 实体完整性 7.3 参照完整性 7.4 用户定义的完整性 7.5 触发器 7.6 SQL Server中数据库完整性的实现 7.7 小结 7.1 数据库的完整性概述 数据库完整性的含义 正确性 指数据的合法性 有效性 指数据是否属于所定…...
Kafka入门-生产者
生产者 生产者发送流程: 延迟时间为0ms时,也就意味着每当有数据就会直接发送 异步发送API 异步发送和同步发送的不同在于:异步发送不需要等待结果,同步发送必须等待结果才能进行下一步发送。 普通异步发送 首先导入所需的k…...
scikit-learn机器学习
# 同时添加如下代码, 这样每次环境(kernel)启动的时候只要运行下方代码即可: # Also add the following code, # so that every time the environment (kernel) starts, # just run the following code: import sys sys.path.append(/home/aistudio/external-libraries)机…...
在树莓派上添加音频输入设备的几种方法
在树莓派上添加音频输入设备可以通过以下步骤完成,具体方法取决于设备类型(如USB麦克风、3.5mm接口麦克风或HDMI音频输入)。以下是详细指南: 1. 连接音频输入设备 USB麦克风/声卡:直接插入树莓派的USB接口。3.5mm麦克…...
Android写一个捕获全局异常的工具类
项目开发和实际运行过程中难免会遇到异常发生,系统提供了一个可以捕获全局异常的工具Uncaughtexceptionhandler,它是Thread的子类(就是package java.lang;里线程的Thread)。本文将利用它将设备信息、报错信息以及错误的发生时间都…...
