数据分析 | 随机森林如何确定参数空间的搜索范围
1. 随机森林超参数
极其重要的三个超参数是必须要调整的,一般再加上两到三个其他超参数进行优化即可。

2. 学习曲线确定n_estimators搜索范围
首先导入必要的库,使用sklearn自带的房价预测数据集:
import numpy as np
import pandas as pd
from sklearn.model_selection import train_test_split
from sklearn.datasets import fetch_california_housing
from sklearn.ensemble import RandomForestRegressor
from sklearn.model_selection import KFold
from sklearn.model_selection import cross_validate
import matplotlib.pyplot as plt
housing = fetch_california_housing()
# 特征数据
X = housing.data[:, [0, 1, 2, 3, 4, 5, 6, 7]]
# 目标变量(房价)
y = housing.target
初始化以及5折交叉验证计算RMSE:
trainRMSE = np.array([])
testRMSE = np.array([])
trainSTD = np.array([])
testSTD = np.array([])Option = range(5,101,5)
for n_estimators in Option :reg_f = RandomForestRegressor(n_estimators=n_estimators, random_state=1412)# 交叉验证输出结果cv = KFold(n_splits=5,shuffle=True,random_state=1412)result_f = cross_validate(reg_f,X,y,cv=cv,scoring="neg_mean_squared_error",return_train_score=True,n_jobs=-1)# 根据输出的MSE进行RMSE计算train = abs(result_f["train_score"])**0.5test = abs(result_f["test_score"])**0.5trainRMSE = np.append(trainRMSE,train.mean())testRMSE = np.append(testRMSE,test.mean())trainSTD = np.append(trainSTD,train.std())testSTD = np.append(testSTD,test.std())
定义绘图函数:
def plotCVresult(Option,trainRMSE,testRMSE,trainSTD,testSTD) :xaxis = Option# RMSEplt.plot(xaxis, trainRMSE,color='k',label='RandomForestTrain')plt.plot(xaxis, testRMSE, color='red', label='RandomForestTest')# 将标准差围绕在RMSE旁边,区间越大表示模型越不稳定plt.plot(xaxis, trainRMSE + trainSTD, color='k', linestyle='dotted')plt.plot(xaxis, trainRMSE - trainSTD, color='k', linestyle='dotted')plt.plot(xaxis, testRMSE + testSTD, color='red', linestyle='dotted')plt.plot(xaxis, testRMSE - testSTD, color='red', linestyle='dotted')plt.xticks([*xaxis])plt.legend(loc=1)plt.xlabel('n_estimators')plt.ylabel('RMSE')plt.title('Learning Curve')plt.show()plotCVresult(Option,trainRMSE,testRMSE,trainSTD,testSTD)
输出结果如下:

3. 使用Tree模块判断max_depth搜索范围
只需在输出的最小值和最大值之间进行搜索即可。
reg_f = RandomForestRegressor(n_estimators=100,random_state=1412)
reg_f = reg_f.fit(X,y)
d = pd.Series([],dtype="int64")
for idx,t in enumerate(reg_f.estimators_) :d[idx] = t.tree_.max_depth
print('决策树的最大深度的最小值为:',d.min())
print('决策树的最大深度的最大值为:',d.max())
输出结果为:

4. 使用Tree模块判断min_weight_fraction_leaf搜索范围
reg_f = RandomForestRegressor(n_estimators=100,random_state=1412)
reg_f = reg_f.fit(X,y)
n = pd.Series([],dtype="int64")
for idx,t in enumerate(reg_f.estimators_) :n[idx] = t.tree_.weighted_n_node_samples
meann = np.zeros(20)
for i in range(0,20) :meann[i] = n[i].mean()
print('决策树分枝所需最小样本权重的最小值为:',meann.min())
print('决策树分枝所需最小样本权重的最大值为:',meann.max())
print('决策树分枝所需最小样本权重的平均值为:',meann.mean())
输出结果为:

5. 使用Tree模块判断min_sample_split搜索范围
reg_f = RandomForestRegressor(n_estimators=20,random_state=1412)
reg_f = reg_f.fit(X,y)
s = pd.Series([],dtype="int64")
for idx,t in enumerate(reg_f.estimators_) :s[idx] = t.tree_.n_node_samples
meann = np.zeros(20)
for i in range(0,20) :meann[i] = s[i].mean()
print('决策树需要最小样本的最小值为:',meann.min())
print('决策树需要最小样本的最大值为:',meann.max())
print('决策树需要最小样本的平均值为:',meann.mean())
输出结果为:

相关文章:
数据分析 | 随机森林如何确定参数空间的搜索范围
1. 随机森林超参数 极其重要的三个超参数是必须要调整的,一般再加上两到三个其他超参数进行优化即可。 2. 学习曲线确定n_estimators搜索范围 首先导入必要的库,使用sklearn自带的房价预测数据集: import numpy as np import pandas as pd f…...
5G+AI数字化智能工厂建设解决方案PPT
导读:原文《5GAI数字化智能工厂建设解决方案》(获取来源见文尾),本文精选其中精华及架构部分,逻辑清晰、内容完整,为快速形成售前方案提供参考。数字化智能工厂定义 智能基础架构协同框架 - 端、边、云、网…...
Windows配置编译ffmpeg +音视频地址
Windows配置MinGW及MinGW-make使用实例 https://blog.csdn.net/Henoiiy/article/details/122550618 ffmpeg安装遇错:nasm/yasm not found or too old. Use --disable-x86asm for a crippled build. https://blog.csdn.net/sayyy/article/details/124337834https://…...
C语言 常用工具型API --------system()
函数名: system() 用 法: int system(char *command); 原理: 加载一个子进程去执行指定的程序,而想Linux命令基本都是一个单独的进程实现的,所以你所掌握的Linux命令越多,该函数功…...
车规级半导体分类(汽车芯片介绍)
车规级半导体,也被称为“汽车芯片”,主要应用于车辆控制装置、车载监控系统和车载电子控制装置等领域。这些半导体器件主要分布在车体控制模块上,以及车载信息娱乐系统方面,包括动力传动综合控制系统、主动安全系统和高级辅助驾驶…...
opencv图像轮廓检测
效果展示: 代码部分: import cv2 import numpy as np img cv2.imread(C:/Users/ibe/Desktop/picture.PNG,cv2.IMREAD_UNCHANGED) # 类型转换 img cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)# 结构元 kernel cv2.getStructuringElement(cv2.MORPH_REC…...
诚迈科技荣膺小米“最佳供应商奖”
近日,诚迈科技受邀参加小米战略合作伙伴HBR总结会。诚迈科技以尽职尽责的合作态度、精益求精的交付质量荣膺小米公司颁发的最佳供应商奖,其性能测试团队荣获优秀团队奖。 诚迈科技与小米在手机终端方向一直保持着密切的合作关系,涉及系统框架…...
分布式 - 消息队列Kafka:Kafka 消费者的消费位移
文章目录 01. Kafka 分区位移02. Kafka 消费位移03. kafka 消费位移的作用04. Kafka 消费位移的提交05. kafka 消费位移的存储位置06. Kafka 消费位移与消费者提交的位移07. kafka 消费位移的提交时机08. Kafka 维护消费状态跟踪的方法 01. Kafka 分区位移 对于Kafka中的分区而…...
H3C QoS打标签和限速配置案例
EF:快速转发 AF:确保转发 CS:给各种协议用的 BE:默认标记(尽力而为) VSR-88-2 出口路由配置: [H3C]dis current-configuration version 7.1.075, ESS 8305 vlan 1 traffic classifier vlan10 operator and if-match a…...
带curl的docker镜像image
带curl的docker镜像,便于k8s中查找问题,确认容器内部是否可用。 用于测试网络的工具,带有curl nslookup等命令 镜像名docker.io/appropriate/curl 测试命令docker run --rm -it docker.io/appropriate/curl /bin/sh 已测试可用 用于测试网…...
Hadoop数据迁移distcp
Hadoop数据迁移distcp 准备工作 确认源集群(a),目标集群(b)确认a集群的主节点和b集群的主节点确认两个集群的网络相通确认迁移模式(全量迁移还是增量迁移),这里选择全量迁移 迁移文件 迁移t…...
QT-Mysql数据库图形化接口
QT sql mysqloper.h qsqlrelationaltablemodelview.h /************************************************************************* 接口描述:Mysql数据库图形化接口 拟制: 接口版本:V1.0 时间:20230727 说明:支…...
LeetCode150道面试经典题-- 合并两个有序链表(简单)
1.题目 将两个升序链表合并为一个新的 升序 链表并返回。新链表是通过拼接给定的两个链表的所有节点组成的。 2.示例 示例 1: 输入:l1 [1,2,4], l2 [1,3,4] 输出:[1,1,2,3,4,4] 示例 2: 输入:l1 [], l2 [] 输…...
GitHub 如何部署写好的H5静态页面
感谢粉皮zu的私信,又有素材写笔记了。(●’◡’●) 刚好记录一下我示例代码的GitHub部署配置,以便于后期追加仓库。 效果 环境 gitwin 步骤 第一步 新建仓库 第二步 拉取代码 将仓库clone到本地 git clone 地址第三步 部署文件 新建.github\workflo…...
SharkTeam:Worldcoin运营数据及业务安全分析
Worldcoin的白皮书中声明,Worldcoin旨在构建一个连接全球人类的新型数字经济系统,由OpenAI创始人Sam Altman于2020年发起。通过区块链技术在Web3世界中实现更加公平、开放和包容的经济体系,并将所有权赋予每个人。并且希望让全世界每一个人都…...
C语言编程练习
考点:【字符串】【数组】 题目1. 打印X 题目描述 输入一个正整数N, 你需要按样例的方式返回一个字符串列表。 1≤N≤15。 样例 1: 输入:1 输出:[“X”] X样例 2: 输入:2 [“XX”, “XX”] …...
vue入门(增查改!)
<template><div><!-- 搜索栏 --><el-card id"search"><el-row><el-col :span"20"><el-input v-model"searchModel.name" placeholder"根据名字查询"></el-input><el-input v-mode…...
移动端身份证识别技术的应用,告别手动录入证件信息
随着移动互联网的的发展,越来越多的公司都推出了自己的移动APP,这些APP多数都涉及到个人身份证信息的输入认证(即实名认证),如果手动去输入身份证号码和姓名,速度非常慢,且用户体验非常差。为了…...
网络通信原理TCP字段解析(第四十七课)
字段含义Source Port(源端口号)源端口,标识哪...
uniapp微信小程序消息订阅快速上手
一、微信公众平台小程序开通消息订阅并设置模板 这边的模板id和详细内容后续前后端需要使用 二、uniapp前端 需要是一个button触发 js: wx.getSetting({success(res){console.log(res)if(res.authSetting[scope.subscribeMessage]){// 业务逻辑}else{uni.request…...
FFmpeg 低延迟同屏方案
引言 在实时互动需求激增的当下,无论是在线教育中的师生同屏演示、远程办公的屏幕共享协作,还是游戏直播的画面实时传输,低延迟同屏已成为保障用户体验的核心指标。FFmpeg 作为一款功能强大的多媒体框架,凭借其灵活的编解码、数据…...
镜像里切换为普通用户
如果你登录远程虚拟机默认就是 root 用户,但你不希望用 root 权限运行 ns-3(这是对的,ns3 工具会拒绝 root),你可以按以下方法创建一个 非 root 用户账号 并切换到它运行 ns-3。 一次性解决方案:创建非 roo…...
华硕a豆14 Air香氛版,美学与科技的馨香融合
在快节奏的现代生活中,我们渴望一个能激发创想、愉悦感官的工作与生活伙伴,它不仅是冰冷的科技工具,更能触动我们内心深处的细腻情感。正是在这样的期许下,华硕a豆14 Air香氛版翩然而至,它以一种前所未有的方式&#x…...
深入浅出深度学习基础:从感知机到全连接神经网络的核心原理与应用
文章目录 前言一、感知机 (Perceptron)1.1 基础介绍1.1.1 感知机是什么?1.1.2 感知机的工作原理 1.2 感知机的简单应用:基本逻辑门1.2.1 逻辑与 (Logic AND)1.2.2 逻辑或 (Logic OR)1.2.3 逻辑与非 (Logic NAND) 1.3 感知机的实现1.3.1 简单实现 (基于阈…...
Selenium常用函数介绍
目录 一,元素定位 1.1 cssSeector 1.2 xpath 二,操作测试对象 三,窗口 3.1 案例 3.2 窗口切换 3.3 窗口大小 3.4 屏幕截图 3.5 关闭窗口 四,弹窗 五,等待 六,导航 七,文件上传 …...
Python 实现 Web 静态服务器(HTTP 协议)
目录 一、在本地启动 HTTP 服务器1. Windows 下安装 node.js1)下载安装包2)配置环境变量3)安装镜像4)node.js 的常用命令 2. 安装 http-server 服务3. 使用 http-server 开启服务1)使用 http-server2)详解 …...
协议转换利器,profinet转ethercat网关的两大派系,各有千秋
随着工业以太网的发展,其高效、便捷、协议开放、易于冗余等诸多优点,被越来越多的工业现场所采用。西门子SIMATIC S7-1200/1500系列PLC集成有Profinet接口,具有实时性、开放性,使用TCP/IP和IT标准,符合基于工业以太网的…...
数据结构:泰勒展开式:霍纳法则(Horner‘s Rule)
目录 🔍 若用递归计算每一项,会发生什么? Horners Rule(霍纳法则) 第一步:我们从最原始的泰勒公式出发 第二步:从形式上重新观察展开式 🌟 第三步:引出霍纳法则&…...
虚幻基础:角色旋转
能帮到你的话,就给个赞吧 😘 文章目录 移动组件使用控制器所需旋转:组件 使用 控制器旋转将旋转朝向运动:组件 使用 移动方向旋转 控制器旋转和移动旋转 缺点移动旋转:必须移动才能旋转,不移动不旋转控制器…...
【大厂机试题解法笔记】矩阵匹配
题目 从一个 N * M(N ≤ M)的矩阵中选出 N 个数,任意两个数字不能在同一行或同一列,求选出来的 N 个数中第 K 大的数字的最小值是多少。 输入描述 输入矩阵要求:1 ≤ K ≤ N ≤ M ≤ 150 输入格式 N M K N*M矩阵 输…...
