当前位置: 首页 > news >正文

第 3 章 稀疏数组和队列(1)

3.1 稀疏 sparsearray 数组

3.1.1先看一个实际的需求

编写的五子棋程序中,有存盘退出续上盘的功能。

在这里插入图片描述

分析问题:
因为该二维数组的很多值是默认值 0.因此记录了很多没有意义的数据.->稀疏数组

3.1.2基本介绍

当一个数组中大部分元素为 0,或者为同一个值的数组时,可以使用稀疏数组来保存该数组.

稀疏数组的处理方法是.

  1. 记录数组一共有几行几列,有多少个不同的值
  2. 把具有不同值的元素的行列及值记录在一个小规模的数组中,从而缩小程序的规模

稀疏数组举例说明
在这里插入图片描述

3.1.3应用实例

  1. 使用稀疏数组,来保留类似前面的二维数组(棋盘、地图等等)
  2. 把稀疏数组存盘,并且可以从新恢复原来的二维数组数
  3. 整体思路分析
    在这里插入图片描述
  4. 代码

/*** 稀疏数组*/
public class SparseArray {/*** 二维数组 转 稀疏数组的思路* 1. 遍历  原始的二维数组,得到有效数据的个数 sum* 2. 根据sum 就可以创建 稀疏数组 sparseArr   int[sum + 1] [3]* 3. 将二维数组的有效数据数据存入到 稀疏数组* <p>* 稀疏数组转原始的二维数组的思路* <p>* 1. 先读取稀疏数组的第一行,根据第一行的数据,创建原始的二维数组,比如上面的  chessArr2 = int [11][11]* 2. 在读取稀疏数组后几行的数据,并赋给 原始的二维数组 即可.*//*** 有效数据的个数*/static int sum = 0;public static void main(String[] args) {//创建一个原始的二维数组 11*11int chessArrSource[][] = new int[11][11];//稀疏数组int sparseArr[][] = null;//转换后的 二维数组int chessArrConvert[][] = null;//1.默认棋盘defaultChessBoard(chessArrSource);//2.二维数组 转 稀疏数组sparseArr = toSparseArray(chessArrSource, sparseArr);//3.稀疏数组 转 二维数组toDoubleDimensionalArray(sparseArr, chessArrConvert);}/*** 1.默认棋盘** @param chessArrSource*/public static void defaultChessBoard(int chessArrSource[][]) {//0:没有棋子,1:黑棋子,2:蓝棋子chessArrSource[1][2] = 1;chessArrSource[2][3] = 2;//输出原始的二维数组System.out.println("原始的二维数组:");/*** 第一维的数组长度是:intArray.length;* 第二维的数组长度是:intArray[index].length;*  注: index即索引(下标)的意思。*/for (int[] row : chessArrSource) {for (int data : row) {System.out.printf("%d\t", data);}System.out.println();}}/*** 2.二维数组 转 稀疏数组*/public static int[][] toSparseArray(int chessArrSource[][], int sparseArr[][]) {//2.二维数组 转 稀疏数组的思路//2.1. 遍历  原始的二维数组,得到有效数据的个数 sumfor (int[] row : chessArrSource) {for (int data : row) {if (data != 0) {sum++;}}}//2.2. 根据sum 就可以创建 稀疏数组 sparseArr   int[sum + 1] [3]sparseArr = new int[sum + 1][3];sparseArr[0][0] = chessArrSource.length;//行数sparseArr[0][1] = chessArrSource.length;//列数sparseArr[0][2] = sum;//有效数据个数//2.3. 将二维数组的有效数据数据存入到 稀疏数组int count = 0;//count用于记录是第几个非0数据for (int i = 1; i < chessArrSource.length; i++) {for (int j = 1; j < chessArrSource.length; j++) {if (chessArrSource[i][j] != 0) {count++;sparseArr[count][0] = i;sparseArr[count][1] = j;sparseArr[count][2] = chessArrSource[i][j];}}}//输出稀疏数组的形式System.out.println();System.out.println("稀疏数组:");for (int i = 0; i < sparseArr.length; i++) {System.out.printf("%d\t%d\t%d\t\n", sparseArr[i][0], sparseArr[i][1], sparseArr[i][2]);}return sparseArr;}/*** 3.稀疏数组 转 二维数组*/public static void toDoubleDimensionalArray(int sparseArr[][], int chessArrConvert[][]) {//稀疏数组转原始的二维数组的思路//1. 先读取稀疏数组的第一行,根据第一行的数据,创建原始的二维数组,比如上面的  chessArr2 = int [11][11]chessArrConvert = new int[sparseArr[0][0]][sparseArr[0][1]];//2. 在读取稀疏数组后几行的数据,并赋给 原始的二维数组 即可.for (int i = 1; i < sparseArr.length; i++) {chessArrConvert[sparseArr[i][0]][sparseArr[i][1]] = sparseArr[i][2];}//输出转换后的二维数组System.out.println();System.out.println("转换后的二维数组:");for (int[] row : chessArrConvert) {for (int data : row) {System.out.printf("%d\t", data);}System.out.println();}}
}
原始的二维数组:
0	0	0	0	0	0	0	0	0	0	0	
0	0	1	0	0	0	0	0	0	0	0	
0	0	0	2	0	0	0	0	0	0	0	
0	0	0	0	0	0	0	0	0	0	0	
0	0	0	0	0	0	0	0	0	0	0	
0	0	0	0	0	0	0	0	0	0	0	
0	0	0	0	0	0	0	0	0	0	0	
0	0	0	0	0	0	0	0	0	0	0	
0	0	0	0	0	0	0	0	0	0	0	
0	0	0	0	0	0	0	0	0	0	0	
0	0	0	0	0	0	0	0	0	0	0	稀疏数组:
11	11	2	
1	2	1	
2	3	2	转换后的二维数组:
0	0	0	0	0	0	0	0	0	0	0	
0	0	1	0	0	0	0	0	0	0	0	
0	0	0	2	0	0	0	0	0	0	0	
0	0	0	0	0	0	0	0	0	0	0	
0	0	0	0	0	0	0	0	0	0	0	
0	0	0	0	0	0	0	0	0	0	0	
0	0	0	0	0	0	0	0	0	0	0	
0	0	0	0	0	0	0	0	0	0	0	
0	0	0	0	0	0	0	0	0	0	0	
0	0	0	0	0	0	0	0	0	0	0	
0	0	0	0	0	0	0	0	0	0	0	
  1. 练习要求:
    在前面的基础上,将稀疏数组保存到磁盘上,比如 map.data
    恢复原来的数组时,读取map.data 进行恢复

相关文章:

第 3 章 稀疏数组和队列(1)

3.1 稀疏 sparsearray 数组 3.1.1先看一个实际的需求 编写的五子棋程序中&#xff0c;有存盘退出和续上盘的功能。 分析问题: 因为该二维数组的很多值是默认值 0.因此记录了很多没有意义的数据.->稀疏数组 3.1.2基本介绍 当一个数组中大部分元素为 0&#xff0c;或者为同…...

7-10 奇偶分家

分数 10 全屏浏览题目 切换布局 作者 陈越 单位 浙江大学 给定N个正整数&#xff0c;请统计奇数和偶数各有多少个&#xff1f; 输入格式&#xff1a; 输入第一行给出一个正整N&#xff08;≤1000&#xff09;&#xff1b;第2行给出N个非负整数&#xff0c;以空格分隔。 输…...

使用词向量以数学方式查找具有相似含义的单词

摄影&#xff1a;Nika Charakova 一、说明 简而言之&#xff0c;词向量只不过是表示自然语言词含义的一系列实数。这项技术是有用的NLP功能的重要推动力&#xff0c;使机器能够“理解”人类语言。本文讨论如何使用词向量以编程方式计算文本的语义相似性&#xff0c;例如&#x…...

opencv实现以图搜图

这里写目录标题 1. 步骤1.1 导入OpenCV库&#xff1a;1.2 加载图像1.3 提取特征1.4 匹配特征1.5 显示结果 2. 完整代码3. 测试图片及效果 1. 步骤 1.1 导入OpenCV库&#xff1a; 在您的C代码中&#xff0c;首先需要导入OpenCV库。您可以使用以下语句导入核心模块&#xff1a;…...

爬虫工作中代理失效了怎么处理?

Hey&#xff01;亲爱的爬虫小伙伴们&#xff0c;是不是经常在爬虫的工作中遇到代理IP失效的问题&#xff1f;别着急&#xff0c;今天我来分享一些应对代理失效的妙招&#xff01;这些方法简单易行&#xff0c;让你爬虫顺利进行. 一、为什么代理会失效&#xff1f; 在爬虫过程…...

使用虚拟环境conda安装不同版本的cuda,cudnn,pytorch

背景&#xff1a;在学习深度学习时&#xff0c;我们不可避免的需要跑多个神经网络&#xff0c;而不同的神经网络环境都不一样&#xff0c;所以必须要使用到虚拟环境(如conda)去做环境隔离&#xff0c;安装属于自己的环境。在这环境中&#xff0c;大多神经网络都必须要用到cuda&…...

【24择校指南】华东师范大学计算机考研考情分析

华东师范大学(B) 考研难度&#xff08;☆☆☆☆&#xff09; 内容&#xff1a;23考情概况&#xff08;拟录取和复试分数人数统计&#xff09;、院校概况、23考试科目、23复试详情、各科目及专业考情分析。 正文2563字&#xff0c;预计阅读&#xff1a;3分钟。 2023考情概况…...

什么是LAXCUS分布式操作系统?

相较Linux、Windows&#xff0c;Laxcus是同时在多台计算机上运行的操作系统&#xff0c;处理大规模、高并发、高性能业务&#xff0c;其特点是资源共享和任务并行&#xff0c;并实现【数存算管】超融合一体化。环境中的资源&#xff1a;CPU、GPU、内存、硬盘、网络&#xff0c;…...

Redis数据结构——链表list

链表是一种常用的数据结构&#xff0c;提供了顺序访问的方式&#xff0c;而且高效地增删操作。 Redis中广泛使用了链表&#xff0c;例如&#xff1a;列表的底层实现之一就是链表。 在Redis中&#xff0c;链表分为两部分&#xff1a;链表信息 链表节点。 链表节点用来表示链表…...

[自学记录06|*百人计划]Gamma矫正与线性工作流

一、前言 Gamma矫正其实也属于我前面落下的一块内容&#xff0c;打算把它补上&#xff0c;其它的没补是因为我之前写的GAMES101笔记里已经涵盖了&#xff0c;而Gamma矫正在101里面确实没提到&#xff0c;于是打算把它补上&#xff0c;这块内容并不难&#xff0c;但是想通透的理…...

【数据结构】二叉树链式结构的实现及其常见操作

目录 1.手搓二叉树 2.二叉树的遍历 2.1前序、中序以及后序遍历 2.2二叉树的层序遍历 3.二叉树的常见操作 3.1求二叉树节点数量 3.2求二叉树叶子节点数量 3.3求二叉树第k层节点个数 3.3求二叉树的深度 3.4二叉树查找值为x的节点 4.二叉树的销毁 1.手搓二叉树 在学习…...

从零实战SLAM-第九课(后端优化)

在七月算法报的班&#xff0c;老师讲的蛮好。好记性不如烂笔头&#xff0c;关键内容还是记录一下吧&#xff0c;课程入口&#xff0c;感兴趣的同学可以学习一下。 --------------------------------------------------------------------------------------------------------…...

Python Opencv实践 - 图像金字塔

import cv2 as cv import numpy as np import matplotlib.pyplot as pltimg cv.imread("../SampleImages/pomeranian.png", cv.IMREAD_COLOR) print(img.shape)#图像上采样 #cv.pyrUp(src, dstNone, dstsizeNone, borderTypeNone) #参考资料&#xff1a;https://blo…...

Baumer工业相机堡盟工业相机如何通过BGAPI SDK设置相机的固定帧率(C++)

Baumer工业相机堡盟工业相机如何通过BGAPI SDK设置相机的固定帧率&#xff08;C&#xff09; Baumer工业相机Baumer工业相机的固定帧率功能的技术背景CameraExplorer如何查看相机固定帧率功能在BGAPI SDK里通过函数设置相机固定帧率 Baumer工业相机通过BGAPI SDK设置相机固定帧…...

计算机竞赛 python+大数据校园卡数据分析

0 前言 &#x1f525; 优质竞赛项目系列&#xff0c;今天要分享的是 &#x1f6a9; 基于yolov5的深度学习车牌识别系统实现 &#x1f947;学长这里给一个题目综合评分(每项满分5分) 难度系数&#xff1a;4分工作量&#xff1a;4分创新点&#xff1a;3分 该项目较为新颖&am…...

DNNGP模型解读-early stopping 和 batch normalization的使用

一、考虑的因素&#xff08;仅代表个人观点&#xff09; 1.首先我们看到他的这篇文章所考虑的不同方面从而做出的不同改进&#xff0c;首先考虑到了对于基因组预测的深度学习方法的设计 &#xff0c;我们设计出来这个方法就是为了基因组预测而使用&#xff0c;这也是主要目的&…...

【目标检测】目标检测 相关学习笔记

目标检测算法 PASCALVOC2012数据集 挑战赛主要分为 图像分类 目标检测 目标分割 动作识别 数据集分为四个大类 交通&#xff08;飞机 船 公交车 摩托车&#xff09; 住房&#xff08;杯子 椅子 餐桌 沙发&#xff09; 动物&#xff08;鸟 猫 奶牛 狗 马 羊&#xff09; 其他&a…...

面试攻略,Java 基础面试 100 问(十六)

反射使用步骤(获取Class对象、调用对象方法) 获取想要操作的类的Class对象&#xff0c;他是反射的核心&#xff0c;通过Class对象我们可以任意调用类的方法。 调用 Class 类中的方法&#xff0c;既就是反射的使用阶段。 使用反射 API 来操作这些信息。 什么是 java 序列化&…...

章节5:脚本注入网页-XSS

章节5&#xff1a;脚本注入网页-XSS XSS &#xff1a;Cross Site Script 恶意攻击者利用web页面的漏洞&#xff0c;插入一些恶意代码&#xff0c;当用户访问页面的时候&#xff0c;代码就会执行&#xff0c;这个时候就达到了攻击的目的。 JavaScript、Java、VBScript、Activ…...

ATF(TF-A)安全通告 TFV-5 (CVE-2017-15031)

安全之安全(security)博客目录导读 ATF(TF-A)安全通告汇总 目录 一、ATF(TF-A)安全通告 TFV-5 (CVE-2017-15031) 二、CVE-2017-15031 一、ATF(TF-A)安全通告 TFV-5 (CVE-2017-15031) Title 未初始化或保存/恢复PMCR_EL0可能会泄露安全世界的时间信息 CVE ID CVE-2017-1503…...

浏览器访问 AWS ECS 上部署的 Docker 容器(监听 80 端口)

✅ 一、ECS 服务配置 Dockerfile 确保监听 80 端口 EXPOSE 80 CMD ["nginx", "-g", "daemon off;"]或 EXPOSE 80 CMD ["python3", "-m", "http.server", "80"]任务定义&#xff08;Task Definition&…...

在rocky linux 9.5上在线安装 docker

前面是指南&#xff0c;后面是日志 sudo dnf config-manager --add-repo https://download.docker.com/linux/centos/docker-ce.repo sudo dnf install docker-ce docker-ce-cli containerd.io -y docker version sudo systemctl start docker sudo systemctl status docker …...

【RockeMQ】第2节|RocketMQ快速实战以及核⼼概念详解(二)

升级Dledger高可用集群 一、主从架构的不足与Dledger的定位 主从架构缺陷 数据备份依赖Slave节点&#xff0c;但无自动故障转移能力&#xff0c;Master宕机后需人工切换&#xff0c;期间消息可能无法读取。Slave仅存储数据&#xff0c;无法主动升级为Master响应请求&#xff…...

自然语言处理——Transformer

自然语言处理——Transformer 自注意力机制多头注意力机制Transformer 虽然循环神经网络可以对具有序列特性的数据非常有效&#xff0c;它能挖掘数据中的时序信息以及语义信息&#xff0c;但是它有一个很大的缺陷——很难并行化。 我们可以考虑用CNN来替代RNN&#xff0c;但是…...

20个超级好用的 CSS 动画库

分享 20 个最佳 CSS 动画库。 它们中的大多数将生成纯 CSS 代码&#xff0c;而不需要任何外部库。 1.Animate.css 一个开箱即用型的跨浏览器动画库&#xff0c;可供你在项目中使用。 2.Magic Animations CSS3 一组简单的动画&#xff0c;可以包含在你的网页或应用项目中。 3.An…...

CRMEB 中 PHP 短信扩展开发:涵盖一号通、阿里云、腾讯云、创蓝

目前已有一号通短信、阿里云短信、腾讯云短信扩展 扩展入口文件 文件目录 crmeb\services\sms\Sms.php 默认驱动类型为&#xff1a;一号通 namespace crmeb\services\sms;use crmeb\basic\BaseManager; use crmeb\services\AccessTokenServeService; use crmeb\services\sms\…...

tomcat入门

1 tomcat 是什么 apache开发的web服务器可以为java web程序提供运行环境tomcat是一款高效&#xff0c;稳定&#xff0c;易于使用的web服务器tomcathttp服务器Servlet服务器 2 tomcat 目录介绍 -bin #存放tomcat的脚本 -conf #存放tomcat的配置文件 ---catalina.policy #to…...

Vue 3 + WebSocket 实战:公司通知实时推送功能详解

&#x1f4e2; Vue 3 WebSocket 实战&#xff1a;公司通知实时推送功能详解 &#x1f4cc; 收藏 点赞 关注&#xff0c;项目中要用到推送功能时就不怕找不到了&#xff01; 实时通知是企业系统中常见的功能&#xff0c;比如&#xff1a;管理员发布通知后&#xff0c;所有用户…...

《Offer来了:Java面试核心知识点精讲》大纲

文章目录 一、《Offer来了:Java面试核心知识点精讲》的典型大纲框架Java基础并发编程JVM原理数据库与缓存分布式架构系统设计二、《Offer来了:Java面试核心知识点精讲(原理篇)》技术文章大纲核心主题:Java基础原理与面试高频考点Java虚拟机(JVM)原理Java并发编程原理Jav…...

用递归算法解锁「子集」问题 —— LeetCode 78题解析

文章目录 一、题目介绍二、递归思路详解&#xff1a;从决策树开始理解三、解法一&#xff1a;二叉决策树 DFS四、解法二&#xff1a;组合式回溯写法&#xff08;推荐&#xff09;五、解法对比 递归算法是编程中一种非常强大且常见的思想&#xff0c;它能够优雅地解决很多复杂的…...