当前位置: 首页 > news >正文

科大讯飞发布星火认知大模型2.0版——体验实测

8月15日,科大讯飞举行讯飞星火认知大模型V2.0升级发布会,对外展示其升级后的大模型代码能力和多模态能力,同时发布并升级搭载讯飞星火认知大模型V2.0能力的多项应用和产品。自5月6日首发以来,星火认知大模型经历V1.5版本的迭代,于8月15日如期迎来V2.0版本。发布会现场,科大讯飞董事长刘庆峰、研究院院长刘聪重磅发布了星火大模型V2.0版本代码能力和多模态能力的升级成果,搭载讯飞星火认知大模型V2.0能力的多项应用和产品亦同步亮相。

 V2.0除了在代码能力突破外,在多模态能力上也很出色。

本文的主要目的是想要实地对其表现能力进行测试分析。

【诺特兰德叶黄素与纯天然蔬菜中的叶黄素有什么区别】

 【如果蒸一个包子需要10分钟,那么蒸100个包子需要多久?】

 【你是一位资深的旅游导游,我接下来的520想要去海南三亚读过一个为期三天的小假期,从北京出发,请为我规划一份超级详细的旅游计划,包括:餐饮文娱、住宿交通、景点打卡等必备项目,也可以为我提前介绍一下当地的风土人情为了推荐特色美食、游玩项目等,请注意这次除了我老婆以外,还有我3岁的女儿,请妥善安排相应的时间避免太赶】

 接下来我们看下在代码生成方面的情况:

【请基于python开发构建基于鸢尾花数据的随机森林分类模型的代码】

  【请基于MATLAB开发快速排序算法并给出运行实例】

 【使用python基于opencv模块开发实现人脸检测模型】

 【将上述代码转化为等价的C++代码】

 【请基于python开发实现拉丁超立方体抽样算法,并给出运行实例】

 【请基于python开发实现卡尔曼滤波算法,并给出运行实例】

卡尔曼滤波算法是一种线性最优估计算法,用于估计动态系统的状态。在Python中,我们可以使用numpy库来实现这个算法。以下是实现卡尔曼滤波算法的步骤:

  1. 导入所需库
  2. 定义一个函数,输入为状态转移矩阵、观测矩阵、初始状态和初始协方差矩阵
  3. 在函数中,初始化状态向量和协方差矩阵
  4. 定义预测函数,输入为当前状态和状态转移矩阵,输出为预测后的状态向量
  5. 定义更新函数,输入为当前状态向量、观测向量、观测矩阵和协方差矩阵,输出为更新后的协方差矩阵和状态向量
  6. 定义卡尔曼滤波函数,输入为初始状态、初始协方差矩阵和观测数据流,输出为滤波后的状态向量
  7. 返回卡尔曼滤波函数

以下是实现卡尔曼滤波算法的Python代码:

import numpy as npdef kalman_filter(F, H, Q, x0, P0):# 初始化状态向量和协方差矩阵x = np.array(x0)P = np.array(P0)# 定义预测函数def predict(x):return F @ x# 定义更新函数def update(z, y):# 预测x_pred = predict(x)P_pred = F @ P @ F.T + Q# 计算卡尔曼增益K = P_pred @ H.T @ np.linalg.inv(H @ P_pred @ H.T + R)# 更新状态向量和协方差矩阵x = x_pred - K @ (z - H @ x_pred)P = (np.eye(len(x)) - K @ H) @ P_predreturn x, P# 定义卡尔曼滤波函数def kalman_filter_step(x, P, z):x, P = update(z, None)return x, P# 初始化状态向量和协方差矩阵x = np.array(x0)P = np.array(P0)# 对观测数据流进行滤波for z in z_data:x, P = kalman_filter_step(x, P, z)return x# 运行实例
F = np.array([[1, 1], [0, 1]])  # 状态转移矩阵
H = np.array([[1, 0]])  # 观测矩阵
Q = np.array([[0.1, 0], [0, 0.1]])  # 过程噪声协方差矩阵
x0 = [0, 0]  # 初始状态
P0 = np.array([[1, 0], [0, 1]])  # 初始协方差矩阵
z_data = [np.array([1]), np.array([2]), np.array([3])]  # 观测数据流filtered_state = kalman_filter(F, H, Q, x0, P0)
print("滤波后的状态向量:", filtered_state)

【请基于python开发实现一个基础的transformer模型,来完成英语翻译成中文任务】

要实现一个基础的Transformer模型来完成英语翻译成中文任务,首先需要安装相关的库,如TensorFlow和transformers。然后,可以使用预训练的英文到中文的Transformer模型(如Hugging Face的MarianMT)作为基础模型,对其进行微调以适应自己的任务。

以下是一个简单的示例:

  1. 安装依赖库:
pip install transformers
pip install torch
  1. 导入所需的库:
import torch
from transformers import MarianMTModel, MarianTokenizer
  1. 加载预训练的英文到中文的Transformer模型和分词器:
model_name = 'Helsinki-NLP/opus-mt-en-zh'
tokenizer = MarianTokenizer.from_pretrained(model_name)
model = MarianMTModel.from_pretrained(model_name)
  1. 对输入文本进行编码:
input_text = "Hello, how are you?"
input_tokens = tokenizer.encode(input_text, return_tensors='pt')
  1. 将编码后的文本输入到模型中,获取翻译结果:
with torch.no_grad():output = model(input_tokens)[0]translation = tokenizer.decode(output[0], skip_special_tokens=True)
print(translation)

暂时没有去核对代码执行是否正常,直观体验感觉就是生成速度比较上一代模型更快了,生成的内容相对更充实一点。

接下来我们看下V2.0所声称的多模态能力。

 感觉这里的图像处理能力是限定在了图文理解上面了。没有办法对图像进行操作处理。

 上面的回答凑合吧。下面的就差的太远了:

这个一半一半吧。 

 至于语音相关的我这里因为没有麦克风就没有去测试的了,感兴趣的欢迎交流下:

 

相关文章:

科大讯飞发布星火认知大模型2.0版——体验实测

8月15日,科大讯飞举行讯飞星火认知大模型V2.0升级发布会,对外展示其升级后的大模型代码能力和多模态能力,同时发布并升级搭载讯飞星火认知大模型V2.0能力的多项应用和产品。自5月6日首发以来,星火认知大模型经历V1.5版本的迭代&am…...

部署mysql到win10电脑上

中间出现了很多问题, 记录一下 我这边是去官网下载的 ,链接:https://dev.mysql.com/downloads/mysql/ 我这边选了不是最新版本的MySQL,因为第一次安装8.1.0版本的,死活运行不起来,直接卸载安重装了&#x…...

nginx+php 出现502 bad gateway

nginxphp 出现502 bad gateway,一般这都不是nginx的问题,而是由于 fastcgi或者php的问题导致的,常见的有以下几种。 1. php.ini 的memory_limit 过小(如果有个别php程序进程需要占用极大内存时这个必须注意) 2. ph…...

基于LVQ神经网络的人脸朝向识别

1案例背景 1.1人脸识别概述 人脸识别作为一个复杂的模式识别问题,近年来受到了广泛的关注,识别领域的各种方法在这个问题上各显所长,而且发展出了许多新方法,大大丰富和拓宽了模式识别的方向。人脸识别、检测,跟踪、特征定位等技术近年来一直是研究的热点。人脸识别是人脸应用…...

Leetcode Top 100 Liked Questions(序号53~74)

53. Maximum Subarray 题意:一个数组,找到和最大的子串 我的思路 我记得好像On的动态规划来做的?但是想不起来了,先死做,用的前缀和——TLE超时 那就只能想想dp怎么做了 假设dp[i]表示的是以 i 为右端点的最大的…...

Rabbitmq消息不丢失

目录 一、消息不丢失1.消息确认2.消息确认业务封装2.1 发送确认消息测试2.2 消息发送失败,设置重发机制 一、消息不丢失 消息的不丢失,在MQ角度考虑,一般有三种途径: 1,生产者不丢数据 2,MQ服务器不丢数据…...

Kotlin runBlocking launch多个协程读写mutableListOf时序

Kotlin runBlocking launch多个协程读写mutableListOf时序 import kotlinx.coroutines.delay import kotlinx.coroutines.launch import kotlinx.coroutines.runBlockingfun main(args: Array<String>) {var lists mutableListOf<String>()runBlocking {launch {r…...

Spring Cloud微服务治理框架深度解析

在学习一个技术之前&#xff0c;首先我们要了解它是做什么的&#xff0c;我们为什么要用它。不然看再多资料都理解不了&#xff0c;因此我们先来讲解下Spring Cloud Spring Cloud是一套微服务治理框架&#xff0c;几乎考虑到了微服务治理的方方面面。那么接下来具体说下 Spring…...

设计模式之原型模式Prototype的C++实现

1、原型模式提出 在软件功能设计中&#xff0c;经常面临着“某些结构复杂的对象”的创建工作&#xff0c;且创建的对象想拥有其他对象在某一刻的状态&#xff0c;则可以使用原型模型。原型模型是通过拷贝构造函数来创建对象&#xff0c;并且该对象拥有其他对象在某一刻的状态。…...

Java 中操作 Redis

文章目录 一、Redis 常用数据类型二、Redis 常用操作命令1. 字符串命令2. 哈希命令3. 列表命令4. 集合命令5. 有序集合命令6. 通用命令 三、在 Java 中操作 Redis1. 导入 maven 坐标2. 配置 Redis 数据源3. 编写配置类 四、在代码中的具体使用 一、Redis 常用数据类型 Redis 存…...

数据结构--最短路径 Dijkstra算法

数据结构–最短路径 Dijkstra算法 Dijkstra算法 计算 b e g i n 点到各个点的最短路 \color{red}计算\ begin\ 点到各个点的最短路 计算 begin 点到各个点的最短路 如果是无向图&#xff0c;可以先把无向图转化成有向图 我们需要2个数组 final[] &#xff08;标记各顶点是否已…...

在 Linux 虚拟机上使用 Azure 自定义脚本扩展版本

参考 azure创建虚拟机,创建虚拟机注意入站端口规则开放80端口、 2.转到资源&#xff0c;点击扩展应用程序&#xff0c;创建存储账户&#xff0c;创建容器&#xff0c;上传文件&#xff0c;选择文件&#xff0c;会自动执行部署。 apt-get update -y && apt-get insta…...

W5500-EVB-PICO 做UDP Server进行数据回环测试(七)

前言 前面我们用W5500-EVB-PICO 开发板在TCP Client和TCP Server模式下&#xff0c;分别进行数据回环测试&#xff0c;本章我们将用开发板在UDP Server模式下进行数据回环测试。 UDP是什么&#xff1f;什么是UDP Server&#xff1f;能干什么&#xff1f; UDP (User Dataqram P…...

ES搜索引擎入门+最佳实践(九):项目实战(二)--elasticsearch java api 进行数据增删改查

本篇是这个系列的最后一篇了,在这之前可以先看看前面的内容: ES搜索引擎入门最佳实践(一)_flame.liu的博客-CSDN博客 ES搜索引擎入门最佳实践(二)_flame.liu的博客-CSDN博客 ES搜索引擎入门最佳实践(三)_flame.liu的博客-CSDN博客 ES搜索引擎入门最佳实践(四)_flame.liu的博…...

android内存分析工具记录,请利用好最后2个神器

相机见证了java内存暴增和native持续增长的问题&#xff0c;因此这里记录一下使用的工具情况&#xff0c;方便后续继续使用 一、java 内存 如果是java层的内存可以直接借助leakCanary工具&#xff0c;配置也很简单&#xff0c;直接在build.gradle中添加依赖即可&#xff1a; …...

安科瑞变电所运维平台在电力系统中应用分析

摘要&#xff1a;现代居民生活、工作对电力资源的需求量相对较多&#xff0c;给我国的电力产业带来了良好的发展机遇与挑战。探索电力系统基本构成&#xff0c; 将变电运维安全管理以及相应的设备维护工作系统性开展&#xff0c;能够根据项目实践工作要求&#xff0c;将满足要求…...

uniapp开发微信小程序使用painter将页面转换为图片并保存到本地相册

引言 我使用到painter的原因是&#xff0c;在uniapp开发微信小程序时&#xff0c;需要将一个页面的内容转换成图片保存到本地相册。 起初在网上找到很多都是在uniapp中使用 html2canvas 将网页转换成图片再jspdf将图片转换为pdf&#xff0c;但是这种方式在小程序环境不支持&am…...

790. 数的三次方根

文章目录 QuestionIdeasCode Question 给定一个浮点数 n &#xff0c;求它的三次方根。 输入格式 共一行&#xff0c;包含一个浮点数 n 。 输出格式 共一行&#xff0c;包含一个浮点数&#xff0c;表示问题的解。 注意&#xff0c;结果保留 6 位小数。 数据范围 −10000≤…...

POSTGRESQL 关于2023-08-14 数据库自动启动文章中使用KILL 来进行配置RELOAD的问题解释...

开头还是介绍一下群&#xff0c;如果感兴趣Polardb ,mongodb ,MySQL ,Postgresql ,redis &#xff0c;SQL SERVER ,ORACLE,Oceanbase 等有问题&#xff0c;有需求都可以加群群内有各大数据库行业大咖&#xff0c;CTO&#xff0c;可以解决你的问题。加群请加 liuaustin3微信号 &…...

vue 使用插件高德地图--vue-amap

第一步&#xff1a;安装 vue-amap npm install vue-amap第二步&#xff1a;在你的 Vue 项目中注册 vue-amap&#xff1a; // main.js import Vue from vue; import VueAMap from vue-amap;Vue.use(VueAMap);VueAMap.initAMapApiLoader({// 高德开发者平台申请key值key: cc9c098…...

vscode里如何用git

打开vs终端执行如下&#xff1a; 1 初始化 Git 仓库&#xff08;如果尚未初始化&#xff09; git init 2 添加文件到 Git 仓库 git add . 3 使用 git commit 命令来提交你的更改。确保在提交时加上一个有用的消息。 git commit -m "备注信息" 4 …...

7.4.分块查找

一.分块查找的算法思想&#xff1a; 1.实例&#xff1a; 以上述图片的顺序表为例&#xff0c; 该顺序表的数据元素从整体来看是乱序的&#xff0c;但如果把这些数据元素分成一块一块的小区间&#xff0c; 第一个区间[0,1]索引上的数据元素都是小于等于10的&#xff0c; 第二…...

利用ngx_stream_return_module构建简易 TCP/UDP 响应网关

一、模块概述 ngx_stream_return_module 提供了一个极简的指令&#xff1a; return <value>;在收到客户端连接后&#xff0c;立即将 <value> 写回并关闭连接。<value> 支持内嵌文本和内置变量&#xff08;如 $time_iso8601、$remote_addr 等&#xff09;&a…...

解决Ubuntu22.04 VMware失败的问题 ubuntu入门之二十八

现象1 打开VMware失败 Ubuntu升级之后打开VMware上报需要安装vmmon和vmnet&#xff0c;点击确认后如下提示 最终上报fail 解决方法 内核升级导致&#xff0c;需要在新内核下重新下载编译安装 查看版本 $ vmware -v VMware Workstation 17.5.1 build-23298084$ lsb_release…...

【ROS】Nav2源码之nav2_behavior_tree-行为树节点列表

1、行为树节点分类 在 Nav2(Navigation2)的行为树框架中,行为树节点插件按照功能分为 Action(动作节点)、Condition(条件节点)、Control(控制节点) 和 Decorator(装饰节点) 四类。 1.1 动作节点 Action 执行具体的机器人操作或任务,直接与硬件、传感器或外部系统…...

PL0语法,分析器实现!

简介 PL/0 是一种简单的编程语言,通常用于教学编译原理。它的语法结构清晰,功能包括常量定义、变量声明、过程(子程序)定义以及基本的控制结构(如条件语句和循环语句)。 PL/0 语法规范 PL/0 是一种教学用的小型编程语言,由 Niklaus Wirth 设计,用于展示编译原理的核…...

C++使用 new 来创建动态数组

问题&#xff1a; 不能使用变量定义数组大小 原因&#xff1a; 这是因为数组在内存中是连续存储的&#xff0c;编译器需要在编译阶段就确定数组的大小&#xff0c;以便正确地分配内存空间。如果允许使用变量来定义数组的大小&#xff0c;那么编译器就无法在编译时确定数组的大…...

【电力电子】基于STM32F103C8T6单片机双极性SPWM逆变(硬件篇)

本项目是基于 STM32F103C8T6 微控制器的 SPWM(正弦脉宽调制)电源模块,能够生成可调频率和幅值的正弦波交流电源输出。该项目适用于逆变器、UPS电源、变频器等应用场景。 供电电源 输入电压采集 上图为本设计的电源电路,图中 D1 为二极管, 其目的是防止正负极电源反接, …...

使用LangGraph和LangSmith构建多智能体人工智能系统

现在&#xff0c;通过组合几个较小的子智能体来创建一个强大的人工智能智能体正成为一种趋势。但这也带来了一些挑战&#xff0c;比如减少幻觉、管理对话流程、在测试期间留意智能体的工作方式、允许人工介入以及评估其性能。你需要进行大量的反复试验。 在这篇博客〔原作者&a…...

Git 3天2K星标:Datawhale 的 Happy-LLM 项目介绍(附教程)

引言 在人工智能飞速发展的今天&#xff0c;大语言模型&#xff08;Large Language Models, LLMs&#xff09;已成为技术领域的焦点。从智能写作到代码生成&#xff0c;LLM 的应用场景不断扩展&#xff0c;深刻改变了我们的工作和生活方式。然而&#xff0c;理解这些模型的内部…...