当前位置: 首页 > news >正文

回归预测 | MATLAB实现基于SSA-KELM-Adaboost麻雀算法优化核极限学习机结合AdaBoost多输入单输出回归预测

回归预测 | MATLAB实现基于SSA-KELM-Adaboost麻雀算法优化核极限学习机结合AdaBoost多输入单输出回归预测

目录

    • 回归预测 | MATLAB实现基于SSA-KELM-Adaboost麻雀算法优化核极限学习机结合AdaBoost多输入单输出回归预测
      • 预测效果
      • 基本介绍
      • 模型描述
      • 程序设计
      • 参考资料

预测效果

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

在这里插入图片描述
在这里插入图片描述

基本介绍

1.Matlab实现SS-KELM-Adaboost多变量回归预测;
2.运行环境为Matlab2020b;
3.输入多个特征,输出单个变量,多变量回归预测;
4.data为数据集,excel数据,前7列输入,最后1列输出,SSA-KELM-AdaboostNN.m为主程序,运行即可,所有文件放在一个文件夹;
5.命令窗口输出R2、MAE、MAPE、RMSE多指标评价;

模型描述

SS-KELM-Adaboost是一种将SSA-KELM和AdaBoost两种机器学习技术结合起来使用的方法,旨在提高模型的性能和鲁棒性。具体而言,AdaBoost则是一种集成学习方法,它将多个弱分类器组合起来形成一个强分类器,其中每个分类器都是针对不同数据集和特征表示训练的。SSA-KELM-AdaBoost算法的基本思想是将SSA-KELM作为基模型,利用AdaBoost算法对其进行增强。具体而言,我们可以训练多个SSA-ELM模型,每个模型使用不同的数据集和特征表示,然后将它们的预测结果组合起来,形成一个更准确和鲁棒的模型。

程序设计

  • 完整源码和数据获取方式:私信回复SSA-KELM-Adaboost麻雀算法优化核极限学习机结合AdaBoost多输入单输出回归预测
%% 预测
t_sim1 = predict(net, p_train); 
t_sim2 = predict(net, p_test ); %%  数据反归一化
T_sim1 = mapminmax('reverse', t_sim1, ps_output);
T_sim2 = mapminmax('reverse', t_sim2, ps_output);%%  均方根误差
error1 = sqrt(sum((T_sim1' - T_train).^2) ./ M);
error2 = sqrt(sum((T_sim2' - T_test ).^2) ./ N);%%  相关指标计算
%  R2
R1 = 1 - norm(T_train - T_sim1')^2 / norm(T_train - mean(T_train))^2;
R2 = 1 - norm(T_test  - T_sim2')^2 / norm(T_test  - mean(T_test ))^2;disp(['训练集数据的R2为:', num2str(R1)])
disp(['测试集数据的R2为:', num2str(R2)])%  MAE
mae1 = sum(abs(T_sim1' - T_train)) ./ M ;
mae2 = sum(abs(T_sim2' - T_test )) ./ N ;disp(['训练集数据的MAE为:', num2str(mae1)])
disp(['测试集数据的MAE为:', num2str(mae2)])%% 平均绝对百分比误差MAPE
MAPE1 = mean(abs((T_train - T_sim1')./T_train));
MAPE2 = mean(abs((T_test - T_sim2')./T_test));disp(['训练集数据的MAPE为:', num2str(MAPE1)])
disp(['测试集数据的MAPE为:', num2str(MAPE2)])%  MBE
mbe1 = sum(abs(T_sim1' - T_train)) ./ M ;
mbe2 = sum(abs(T_sim1' - T_train)) ./ N ;disp(['训练集数据的MBE为:', num2str(mbe1)])
disp(['测试集数据的MBE为:', num2str(mbe2)])%均方误差 MSE
mse1 = sum((T_sim1' - T_train).^2)./M;
mse2 = sum((T_sim2' - T_test).^2)./N;disp(['训练集数据的MSE为:', num2str(mse1)])
disp(['测试集数据的MSE为:', num2str(mse2)])

参考资料

[1] https://blog.csdn.net/kjm13182345320/article/details/128577926?spm=1001.2014.3001.5501
[2] https://blog.csdn.net/kjm13182345320/article/details/128573597?spm=1001.2014.3001.5501

相关文章:

回归预测 | MATLAB实现基于SSA-KELM-Adaboost麻雀算法优化核极限学习机结合AdaBoost多输入单输出回归预测

回归预测 | MATLAB实现基于SSA-KELM-Adaboost麻雀算法优化核极限学习机结合AdaBoost多输入单输出回归预测 目录 回归预测 | MATLAB实现基于SSA-KELM-Adaboost麻雀算法优化核极限学习机结合AdaBoost多输入单输出回归预测预测效果基本介绍模型描述程序设计参考资料 预测效果 基本…...

《cpolar内网穿透》外网SSH远程连接linux(CentOS)服务器

本次教程我们来实现如何在外公网环境下,SSH远程连接家里/公司的Linux CentOS服务器,无需公网IP,也不需要设置路由器。 视频教程 [video(video-jrpesBrv-1680147672481)(type-csdn)(url-CSDN直播https://live-file.csdnimg.cn/release/live/…...

IDEA启动报错【java.sql.SQLSyntaxErrorException: ORA-00904: “P“.“PRJ_NO“: 标识符无效】

IDEA报错如下: 2023-08-17 11:26:15.535 ERROR [egrant-biz,b48324d82fe23753,b48324d82fe23753,true] 24108 --- [ XNIO-1 task-1] c.i.c.l.c.RestExceptionController : 服务器异常org.springframework.jdbc.BadSqlGrammarException: ### Error queryin…...

Nginx详解

1、高并发时代 单台tomcat在理想情况下可支持的最大并发数量在200~500之间,如果大于这个数量可能会造成响应缓慢甚至宕机。 解决方案是通过多台服务器分摊并发压力,这不仅需要有多台tomcat服务器,还需要一台服务器专门用来分配请求。这既是…...

摸清一下mysql授权语句的实际执行关系

样例 ---------------------------------------------------------------------- grant all PRIVILEGES on db1.* to test% identified by test1; grant all PRIVILEGES on db2.* to test% identified by test2; grant all PRIVILEGES on db3.* to test127.0.0.1 identified …...

sCrypt于8月12日在上海亮相BSV数字未来论坛

2023年8月12日,由上海可一澈科技有限公司(以下简称“可一科技”)、 临港国际科创研究院发起,携手美国sCrypt公司、福州博泉网络科技有限公司、复旦大学区块链协会,举办的BSV数字未来论坛在中国上海成功落下帷幕。 本次…...

Hbase的列式存储到底是什么意思?一篇文章让你彻底明白

一、 HBase 定义 Apache HBase™ 是以 hdfs 为数据存储的,一种分布式、可扩展的 NoSQL 数据库。 二、 HBase 数据模型 HBase 的设计理念依据 Google 的 BigTable 论文,论文中对于数据模型的首句介绍。 Bigtable 是一个稀疏的、分布式的、持久的多维排…...

机器学习|Softmax 回归的数学理解及代码解析

机器学习|Softmax 回归的数学理解及代码解析 Softmax 回归是一种常用的多类别分类算法,适用于将输入向量映射到多个类别的概率分布。在本文中,我们将深入探讨 Softmax 回归的数学原理,并提供 Python 示例代码帮助读者更好地理解和…...

EmbedPress Pro 在WordPress网站中嵌入任何内容

EmbedPress Pro可让您通过高级自定义、自定义品牌、延迟加载和更多惊人功能嵌入源。为古腾堡块和Elementor编辑器提供支持的一体化 WordPress 嵌入解决方案。使用 EmbedPress 在古腾堡创建交互式内容。使用 EmbedPress 的古腾堡块立即将任何内容嵌入到您的网站。 网址: EmbedP…...

【C++学习手札】一文带你初识C++继承

食用指南:本文在有C基础的情况下食用更佳 🍀本文前置知识: C类 ♈️今日夜电波:napori—Vaundy 1:21 ━━━━━━️💟──────── 3:23 …...

【ubuntu18.04】01-network-manager-all.yaml和interfaces和resolv.conf各有什么区别和联系

文章目录 01-network-manager-all.yaml、interfaces 和 resolv.conf 是与网络配置相关的文件,它们在网络设置中有着不同的作用和使用方式。 01-network-manager-all.yaml: 这是一个配置文件,通常在 Ubuntu 系统上使用 NetworkManager 进行网络管理时使用…...

24近3年内蒙古大学自动化考研院校分析

今天给大家带来的是内蒙古大学控制考研分析 满满干货~还不快快点赞收藏 一、内蒙古大学 学校简介 内蒙古大学位于内蒙古自治区首府、历史文化名城呼和浩特市,距北京400余公里,是中华人民共和国成立后党和国家在民族地区创办的第一所综合大…...

大语言模型(LLM)与 Jupyter 连接起来了

现在,大语言模型(LLM)与 Jupyter 连接起来了! 这主要归功于一个名叫 Jupyter AI 的项目,它是官方支持的 Project Jupyter 子项目。目前该项目已经完全开源,其连接的模型主要来自 AI21、Anthropic、AWS、Co…...

ChatGLM2-6B在Windows下的微调

ChatGLM2-6B在Windows下的微调 零、重要参考资料 1、ChatGLM2-6B! 我跑通啦!本地部署微调(windows系统):这是最关键的一篇文章,提供了Windows下的脚本 2、LangChain ChatGLM2-6B 搭建个人专属知识库:提供…...

聊聊火车的发展

目录 1.火车的概念 2.火车的发展历史 3.火车对战争的影响 4.火车对人们出行造成的影响 1.火车的概念 火车是一种由机械动力驱动的陆上交通工具,通常用来运输人员和货物。它由一列或多列的连接在一起的车厢组成,有轨道作为其行驶的基础,并通…...

IDEA使用@Autowired为什么会警告?

在使用IDEA编写Spring相关的项目时,当在字段上使用Autowired注解时,总会出现一个波浪线提示:”Field injection is not recommended.” 这让我不禁疑惑:我每天都在使用这种方式,为何不被推荐呢?今天&#x…...

npm如何设置淘宝的镜像源模式

1. 查看当前npm的下载源 npm config get registry2. 全局配置npm使用淘宝镜像作为默认下载源 npm config set registry https://registry.npm.taobao.org --global3. 安装依赖包 npm install <package-name> 添加到devDependencies字段中&#xff1a; npm install &l…...

浅谈Redis的maxmemory设置以及淘汰策略

推荐阅读 AI文本 OCR识别最佳实践 AI Gamma一键生成PPT工具直达链接 玩转cloud Studio 在线编码神器 玩转 GPU AI绘画、AI讲话、翻译,GPU点亮AI想象空间 资源分享 「java、python面试题」来自UC网盘app分享&#xff0c;打开手机app&#xff0c;额外获得1T空间 https://dr…...

考虑分布式电源的配电网无功优化问题研究(Matlab代码实现)

&#x1f4a5;&#x1f4a5;&#x1f49e;&#x1f49e;欢迎来到本博客❤️❤️&#x1f4a5;&#x1f4a5; &#x1f3c6;博主优势&#xff1a;&#x1f31e;&#x1f31e;&#x1f31e;博客内容尽量做到思维缜密&#xff0c;逻辑清晰&#xff0c;为了方便读者。 ⛳️座右铭&a…...

Cpp异常概述

异常概述 1. 异常处理的重要性和作用&#xff1a; 异常处理是编程中的一个核心组成部分&#xff0c;因为它提供了一种方法来处理程序运行时可能遇到的意外情况&#xff0c;例如文件未找到、网络连接丢失或无效的用户输入等。当这些情况发生时&#xff0c;程序可以优雅地处理它…...

RestClient

什么是RestClient RestClient 是 Elasticsearch 官方提供的 Java 低级 REST 客户端&#xff0c;它允许HTTP与Elasticsearch 集群通信&#xff0c;而无需处理 JSON 序列化/反序列化等底层细节。它是 Elasticsearch Java API 客户端的基础。 RestClient 主要特点 轻量级&#xff…...

Debian系统简介

目录 Debian系统介绍 Debian版本介绍 Debian软件源介绍 软件包管理工具dpkg dpkg核心指令详解 安装软件包 卸载软件包 查询软件包状态 验证软件包完整性 手动处理依赖关系 dpkg vs apt Debian系统介绍 Debian 和 Ubuntu 都是基于 Debian内核 的 Linux 发行版&#xff…...

java调用dll出现unsatisfiedLinkError以及JNA和JNI的区别

UnsatisfiedLinkError 在对接硬件设备中&#xff0c;我们会遇到使用 java 调用 dll文件 的情况&#xff0c;此时大概率出现UnsatisfiedLinkError链接错误&#xff0c;原因可能有如下几种 类名错误包名错误方法名参数错误使用 JNI 协议调用&#xff0c;结果 dll 未实现 JNI 协…...

【数据分析】R版IntelliGenes用于生物标志物发现的可解释机器学习

禁止商业或二改转载&#xff0c;仅供自学使用&#xff0c;侵权必究&#xff0c;如需截取部分内容请后台联系作者! 文章目录 介绍流程步骤1. 输入数据2. 特征选择3. 模型训练4. I-Genes 评分计算5. 输出结果 IntelliGenesR 安装包1. 特征选择2. 模型训练和评估3. I-Genes 评分计…...

python报错No module named ‘tensorflow.keras‘

是由于不同版本的tensorflow下的keras所在的路径不同&#xff0c;结合所安装的tensorflow的目录结构修改from语句即可。 原语句&#xff1a; from tensorflow.keras.layers import Conv1D, MaxPooling1D, LSTM, Dense 修改后&#xff1a; from tensorflow.python.keras.lay…...

佰力博科技与您探讨热释电测量的几种方法

热释电的测量主要涉及热释电系数的测定&#xff0c;这是表征热释电材料性能的重要参数。热释电系数的测量方法主要包括静态法、动态法和积分电荷法。其中&#xff0c;积分电荷法最为常用&#xff0c;其原理是通过测量在电容器上积累的热释电电荷&#xff0c;从而确定热释电系数…...

Python基于历史模拟方法实现投资组合风险管理的VaR与ES模型项目实战

说明&#xff1a;这是一个机器学习实战项目&#xff08;附带数据代码文档&#xff09;&#xff0c;如需数据代码文档可以直接到文章最后关注获取。 1.项目背景 在金融市场日益复杂和波动加剧的背景下&#xff0c;风险管理成为金融机构和个人投资者关注的核心议题之一。VaR&…...

腾讯云V3签名

想要接入腾讯云的Api&#xff0c;必然先按其文档计算出所要求的签名。 之前也调用过腾讯云的接口&#xff0c;但总是卡在签名这一步&#xff0c;最后放弃选择SDK&#xff0c;这次终于自己代码实现。 可能腾讯云翻新了接口文档&#xff0c;现在阅读起来&#xff0c;清晰了很多&…...

Redis:现代应用开发的高效内存数据存储利器

一、Redis的起源与发展 Redis最初由意大利程序员Salvatore Sanfilippo在2009年开发&#xff0c;其初衷是为了满足他自己的一个项目需求&#xff0c;即需要一个高性能的键值存储系统来解决传统数据库在高并发场景下的性能瓶颈。随着项目的开源&#xff0c;Redis凭借其简单易用、…...

Golang——6、指针和结构体

指针和结构体 1、指针1.1、指针地址和指针类型1.2、指针取值1.3、new和make 2、结构体2.1、type关键字的使用2.2、结构体的定义和初始化2.3、结构体方法和接收者2.4、给任意类型添加方法2.5、结构体的匿名字段2.6、嵌套结构体2.7、嵌套匿名结构体2.8、结构体的继承 3、结构体与…...