回归预测 | MATLAB实现基于SSA-KELM-Adaboost麻雀算法优化核极限学习机结合AdaBoost多输入单输出回归预测
回归预测 | MATLAB实现基于SSA-KELM-Adaboost麻雀算法优化核极限学习机结合AdaBoost多输入单输出回归预测
目录
- 回归预测 | MATLAB实现基于SSA-KELM-Adaboost麻雀算法优化核极限学习机结合AdaBoost多输入单输出回归预测
- 预测效果
- 基本介绍
- 模型描述
- 程序设计
- 参考资料
预测效果









基本介绍
1.Matlab实现SS-KELM-Adaboost多变量回归预测;
2.运行环境为Matlab2020b;
3.输入多个特征,输出单个变量,多变量回归预测;
4.data为数据集,excel数据,前7列输入,最后1列输出,SSA-KELM-AdaboostNN.m为主程序,运行即可,所有文件放在一个文件夹;
5.命令窗口输出R2、MAE、MAPE、RMSE多指标评价;
模型描述
SS-KELM-Adaboost是一种将SSA-KELM和AdaBoost两种机器学习技术结合起来使用的方法,旨在提高模型的性能和鲁棒性。具体而言,AdaBoost则是一种集成学习方法,它将多个弱分类器组合起来形成一个强分类器,其中每个分类器都是针对不同数据集和特征表示训练的。SSA-KELM-AdaBoost算法的基本思想是将SSA-KELM作为基模型,利用AdaBoost算法对其进行增强。具体而言,我们可以训练多个SSA-ELM模型,每个模型使用不同的数据集和特征表示,然后将它们的预测结果组合起来,形成一个更准确和鲁棒的模型。
程序设计
- 完整源码和数据获取方式:私信回复SSA-KELM-Adaboost麻雀算法优化核极限学习机结合AdaBoost多输入单输出回归预测。
%% 预测
t_sim1 = predict(net, p_train);
t_sim2 = predict(net, p_test ); %% 数据反归一化
T_sim1 = mapminmax('reverse', t_sim1, ps_output);
T_sim2 = mapminmax('reverse', t_sim2, ps_output);%% 均方根误差
error1 = sqrt(sum((T_sim1' - T_train).^2) ./ M);
error2 = sqrt(sum((T_sim2' - T_test ).^2) ./ N);%% 相关指标计算
% R2
R1 = 1 - norm(T_train - T_sim1')^2 / norm(T_train - mean(T_train))^2;
R2 = 1 - norm(T_test - T_sim2')^2 / norm(T_test - mean(T_test ))^2;disp(['训练集数据的R2为:', num2str(R1)])
disp(['测试集数据的R2为:', num2str(R2)])% MAE
mae1 = sum(abs(T_sim1' - T_train)) ./ M ;
mae2 = sum(abs(T_sim2' - T_test )) ./ N ;disp(['训练集数据的MAE为:', num2str(mae1)])
disp(['测试集数据的MAE为:', num2str(mae2)])%% 平均绝对百分比误差MAPE
MAPE1 = mean(abs((T_train - T_sim1')./T_train));
MAPE2 = mean(abs((T_test - T_sim2')./T_test));disp(['训练集数据的MAPE为:', num2str(MAPE1)])
disp(['测试集数据的MAPE为:', num2str(MAPE2)])% MBE
mbe1 = sum(abs(T_sim1' - T_train)) ./ M ;
mbe2 = sum(abs(T_sim1' - T_train)) ./ N ;disp(['训练集数据的MBE为:', num2str(mbe1)])
disp(['测试集数据的MBE为:', num2str(mbe2)])%均方误差 MSE
mse1 = sum((T_sim1' - T_train).^2)./M;
mse2 = sum((T_sim2' - T_test).^2)./N;disp(['训练集数据的MSE为:', num2str(mse1)])
disp(['测试集数据的MSE为:', num2str(mse2)])
参考资料
[1] https://blog.csdn.net/kjm13182345320/article/details/128577926?spm=1001.2014.3001.5501
[2] https://blog.csdn.net/kjm13182345320/article/details/128573597?spm=1001.2014.3001.5501
相关文章:
回归预测 | MATLAB实现基于SSA-KELM-Adaboost麻雀算法优化核极限学习机结合AdaBoost多输入单输出回归预测
回归预测 | MATLAB实现基于SSA-KELM-Adaboost麻雀算法优化核极限学习机结合AdaBoost多输入单输出回归预测 目录 回归预测 | MATLAB实现基于SSA-KELM-Adaboost麻雀算法优化核极限学习机结合AdaBoost多输入单输出回归预测预测效果基本介绍模型描述程序设计参考资料 预测效果 基本…...
《cpolar内网穿透》外网SSH远程连接linux(CentOS)服务器
本次教程我们来实现如何在外公网环境下,SSH远程连接家里/公司的Linux CentOS服务器,无需公网IP,也不需要设置路由器。 视频教程 [video(video-jrpesBrv-1680147672481)(type-csdn)(url-CSDN直播https://live-file.csdnimg.cn/release/live/…...
IDEA启动报错【java.sql.SQLSyntaxErrorException: ORA-00904: “P“.“PRJ_NO“: 标识符无效】
IDEA报错如下: 2023-08-17 11:26:15.535 ERROR [egrant-biz,b48324d82fe23753,b48324d82fe23753,true] 24108 --- [ XNIO-1 task-1] c.i.c.l.c.RestExceptionController : 服务器异常org.springframework.jdbc.BadSqlGrammarException: ### Error queryin…...
Nginx详解
1、高并发时代 单台tomcat在理想情况下可支持的最大并发数量在200~500之间,如果大于这个数量可能会造成响应缓慢甚至宕机。 解决方案是通过多台服务器分摊并发压力,这不仅需要有多台tomcat服务器,还需要一台服务器专门用来分配请求。这既是…...
摸清一下mysql授权语句的实际执行关系
样例 ---------------------------------------------------------------------- grant all PRIVILEGES on db1.* to test% identified by test1; grant all PRIVILEGES on db2.* to test% identified by test2; grant all PRIVILEGES on db3.* to test127.0.0.1 identified …...
sCrypt于8月12日在上海亮相BSV数字未来论坛
2023年8月12日,由上海可一澈科技有限公司(以下简称“可一科技”)、 临港国际科创研究院发起,携手美国sCrypt公司、福州博泉网络科技有限公司、复旦大学区块链协会,举办的BSV数字未来论坛在中国上海成功落下帷幕。 本次…...
Hbase的列式存储到底是什么意思?一篇文章让你彻底明白
一、 HBase 定义 Apache HBase™ 是以 hdfs 为数据存储的,一种分布式、可扩展的 NoSQL 数据库。 二、 HBase 数据模型 HBase 的设计理念依据 Google 的 BigTable 论文,论文中对于数据模型的首句介绍。 Bigtable 是一个稀疏的、分布式的、持久的多维排…...
机器学习|Softmax 回归的数学理解及代码解析
机器学习|Softmax 回归的数学理解及代码解析 Softmax 回归是一种常用的多类别分类算法,适用于将输入向量映射到多个类别的概率分布。在本文中,我们将深入探讨 Softmax 回归的数学原理,并提供 Python 示例代码帮助读者更好地理解和…...
EmbedPress Pro 在WordPress网站中嵌入任何内容
EmbedPress Pro可让您通过高级自定义、自定义品牌、延迟加载和更多惊人功能嵌入源。为古腾堡块和Elementor编辑器提供支持的一体化 WordPress 嵌入解决方案。使用 EmbedPress 在古腾堡创建交互式内容。使用 EmbedPress 的古腾堡块立即将任何内容嵌入到您的网站。 网址: EmbedP…...
【C++学习手札】一文带你初识C++继承
食用指南:本文在有C基础的情况下食用更佳 🍀本文前置知识: C类 ♈️今日夜电波:napori—Vaundy 1:21 ━━━━━━️💟──────── 3:23 …...
【ubuntu18.04】01-network-manager-all.yaml和interfaces和resolv.conf各有什么区别和联系
文章目录 01-network-manager-all.yaml、interfaces 和 resolv.conf 是与网络配置相关的文件,它们在网络设置中有着不同的作用和使用方式。 01-network-manager-all.yaml: 这是一个配置文件,通常在 Ubuntu 系统上使用 NetworkManager 进行网络管理时使用…...
24近3年内蒙古大学自动化考研院校分析
今天给大家带来的是内蒙古大学控制考研分析 满满干货~还不快快点赞收藏 一、内蒙古大学 学校简介 内蒙古大学位于内蒙古自治区首府、历史文化名城呼和浩特市,距北京400余公里,是中华人民共和国成立后党和国家在民族地区创办的第一所综合大…...
大语言模型(LLM)与 Jupyter 连接起来了
现在,大语言模型(LLM)与 Jupyter 连接起来了! 这主要归功于一个名叫 Jupyter AI 的项目,它是官方支持的 Project Jupyter 子项目。目前该项目已经完全开源,其连接的模型主要来自 AI21、Anthropic、AWS、Co…...
ChatGLM2-6B在Windows下的微调
ChatGLM2-6B在Windows下的微调 零、重要参考资料 1、ChatGLM2-6B! 我跑通啦!本地部署微调(windows系统):这是最关键的一篇文章,提供了Windows下的脚本 2、LangChain ChatGLM2-6B 搭建个人专属知识库:提供…...
聊聊火车的发展
目录 1.火车的概念 2.火车的发展历史 3.火车对战争的影响 4.火车对人们出行造成的影响 1.火车的概念 火车是一种由机械动力驱动的陆上交通工具,通常用来运输人员和货物。它由一列或多列的连接在一起的车厢组成,有轨道作为其行驶的基础,并通…...
IDEA使用@Autowired为什么会警告?
在使用IDEA编写Spring相关的项目时,当在字段上使用Autowired注解时,总会出现一个波浪线提示:”Field injection is not recommended.” 这让我不禁疑惑:我每天都在使用这种方式,为何不被推荐呢?今天&#x…...
npm如何设置淘宝的镜像源模式
1. 查看当前npm的下载源 npm config get registry2. 全局配置npm使用淘宝镜像作为默认下载源 npm config set registry https://registry.npm.taobao.org --global3. 安装依赖包 npm install <package-name> 添加到devDependencies字段中: npm install &l…...
浅谈Redis的maxmemory设置以及淘汰策略
推荐阅读 AI文本 OCR识别最佳实践 AI Gamma一键生成PPT工具直达链接 玩转cloud Studio 在线编码神器 玩转 GPU AI绘画、AI讲话、翻译,GPU点亮AI想象空间 资源分享 「java、python面试题」来自UC网盘app分享,打开手机app,额外获得1T空间 https://dr…...
考虑分布式电源的配电网无功优化问题研究(Matlab代码实现)
💥💥💞💞欢迎来到本博客❤️❤️💥💥 🏆博主优势:🌞🌞🌞博客内容尽量做到思维缜密,逻辑清晰,为了方便读者。 ⛳️座右铭&a…...
Cpp异常概述
异常概述 1. 异常处理的重要性和作用: 异常处理是编程中的一个核心组成部分,因为它提供了一种方法来处理程序运行时可能遇到的意外情况,例如文件未找到、网络连接丢失或无效的用户输入等。当这些情况发生时,程序可以优雅地处理它…...
wordpress后台更新后 前端没变化的解决方法
使用siteground主机的wordpress网站,会出现更新了网站内容和修改了php模板文件、js文件、css文件、图片文件后,网站没有变化的情况。 不熟悉siteground主机的新手,遇到这个问题,就很抓狂,明明是哪都没操作错误&#x…...
stm32G473的flash模式是单bank还是双bank?
今天突然有人stm32G473的flash模式是单bank还是双bank?由于时间太久,我真忘记了。搜搜发现,还真有人和我一样。见下面的链接:https://shequ.stmicroelectronics.cn/forum.php?modviewthread&tid644563 根据STM32G4系列参考手…...
微软PowerBI考试 PL300-选择 Power BI 模型框架【附练习数据】
微软PowerBI考试 PL300-选择 Power BI 模型框架 20 多年来,Microsoft 持续对企业商业智能 (BI) 进行大量投资。 Azure Analysis Services (AAS) 和 SQL Server Analysis Services (SSAS) 基于无数企业使用的成熟的 BI 数据建模技术。 同样的技术也是 Power BI 数据…...
day52 ResNet18 CBAM
在深度学习的旅程中,我们不断探索如何提升模型的性能。今天,我将分享我在 ResNet18 模型中插入 CBAM(Convolutional Block Attention Module)模块,并采用分阶段微调策略的实践过程。通过这个过程,我不仅提升…...
8k长序列建模,蛋白质语言模型Prot42仅利用目标蛋白序列即可生成高亲和力结合剂
蛋白质结合剂(如抗体、抑制肽)在疾病诊断、成像分析及靶向药物递送等关键场景中发挥着不可替代的作用。传统上,高特异性蛋白质结合剂的开发高度依赖噬菌体展示、定向进化等实验技术,但这类方法普遍面临资源消耗巨大、研发周期冗长…...
Cilium动手实验室: 精通之旅---20.Isovalent Enterprise for Cilium: Zero Trust Visibility
Cilium动手实验室: 精通之旅---20.Isovalent Enterprise for Cilium: Zero Trust Visibility 1. 实验室环境1.1 实验室环境1.2 小测试 2. The Endor System2.1 部署应用2.2 检查现有策略 3. Cilium 策略实体3.1 创建 allow-all 网络策略3.2 在 Hubble CLI 中验证网络策略源3.3 …...
在四层代理中还原真实客户端ngx_stream_realip_module
一、模块原理与价值 PROXY Protocol 回溯 第三方负载均衡(如 HAProxy、AWS NLB、阿里 SLB)发起上游连接时,将真实客户端 IP/Port 写入 PROXY Protocol v1/v2 头。Stream 层接收到头部后,ngx_stream_realip_module 从中提取原始信息…...
1.3 VSCode安装与环境配置
进入网址Visual Studio Code - Code Editing. Redefined下载.deb文件,然后打开终端,进入下载文件夹,键入命令 sudo dpkg -i code_1.100.3-1748872405_amd64.deb 在终端键入命令code即启动vscode 需要安装插件列表 1.Chinese简化 2.ros …...
现代密码学 | 椭圆曲线密码学—附py代码
Elliptic Curve Cryptography 椭圆曲线密码学(ECC)是一种基于有限域上椭圆曲线数学特性的公钥加密技术。其核心原理涉及椭圆曲线的代数性质、离散对数问题以及有限域上的运算。 椭圆曲线密码学是多种数字签名算法的基础,例如椭圆曲线数字签…...
WordPress插件:AI多语言写作与智能配图、免费AI模型、SEO文章生成
厌倦手动写WordPress文章?AI自动生成,效率提升10倍! 支持多语言、自动配图、定时发布,让内容创作更轻松! AI内容生成 → 不想每天写文章?AI一键生成高质量内容!多语言支持 → 跨境电商必备&am…...
