部署LVS-DR群集
LVS的工作模式及工作过程
LVS 有三种负载均衡的模式,分别是VS/NAT(nat 模式)、VS/DR(路由模式)、VS/TUN(隧道模式)。
1、NAT模式(VS-NAT)
原理:首先负载均衡器接收到客户的请求数据包时,根据调度算法决定将请求发送给哪个后端的真实服务器(RS)。然后负载均衡器就把客户端发送的请求数据包的目标IP地址及端口改成后端真实服务器的IP地址(RIP)。真实服务器响应完请求后,查看默认路由,把响应后的数据包发送给负载均衡器,负载均衡器在接收到响应包后,把包的源地址改成虚拟地址(VIP)然后发送回给客户端。
优点:集群中的服务器可以使用任何支持TCP/IP的操作系统,只要负载均衡器有一个合法的IP地址。
缺点:扩展性有限,当服务器节点增长过多时,由于所有的请求和应答都需要经过负载均衡器,因此负载均衡器将成为整个系统的瓶颈。
2、直接路由模式(VS-DR)
原理:首先负载均衡器接收到客户的请求数据包时,根据调度算法决定将请求发送给哪个后端的真实服务器(RS)。然后负载均衡器就把客户端发送的请求数据包的目标MAC地址改成后端真实服务器的MAC地址(R-MAC)。真实服务器响应完请求后,查看默认路由,把响应后的数据包直接发送给客户端,不需要经过负载均衡器。
优点:负载均衡器只负责将请求包分发给后端节点服务器,而RS将应答包直接发给用户。所以,减少了负载均衡器的大量数据流动,负载均衡器不再是系统的瓶颈,也能处理很巨大的请求量。
缺点:需要负载均衡器与真实服务器RS都有一块网卡连接到同一物理网段上,必须在同一个局域网环境。
3、IP隧道模式(VS-TUN)
原理:首先负载均衡器接收到客户的请求数据包时,根据调度算法决定将请求发送给哪个后端的真实服务器(RS)。然后负载均衡器就把客户端发送的请求报文封装一层IP隧道(T-IP)转发到真实服务器(RS)。真实服务器响应完请求后,查看默认路由,把响应后的数据包直接发送给客户端,不需要经过负载均衡器。
优点:负载均衡器只负责将请求包分发给后端节点服务器,而RS将应答包直接发给用户。所以,减少了负载均衡器的大量数据流动,负载均衡器不再是系统的瓶颈,也能处理很巨大的请求量。
缺点:隧道模式的RS节点需要合法IP,这种方式需要所有的服务器支持“IP Tunneling”。
DR模式群集
数据包流向分析
(1)客户端发送请求到 Director Server(负载均衡器),请求的数据报文(源 IP 是 CIP,目标 IP 是 VIP)到达内核空间
(2)Director Server 和 Real Server 在同一个网络中,数据通过二层数据链路层来传输
(3)内核空间判断数据包的目标IP是本机VIP,此时IPVS(IP虚拟服务器)比对数据包请求的服务是否是集群服务,是集群服务就重新封装数据包。修改源 MAC 地址为 Director Server 的 MAC地址,修改目标 MAC 地址为 Real Server 的 MAC 地址,源 IP 地址与目标 IP 地址没有改变,然后将数据包发送给 Real Server
(4)到达 Real Server 的请求报文的 MAC 地址是自身的 MAC 地址,就接收此报文。数据包重新封装报文(源 IP 地址为 VIP,目标 IP 为 CIP),将响应报文通过 lo 接口传送给物理网卡然后向外发出
(5)Real Server 直接将响应报文传送到客户端
DR 模式的特点
(1)Director Server 和 Real Server 必须在同一个物理网络中
(2)Real Server 可以使用私有地址,也可以使用公网地址。如果使用公网地址,可以通过互联网对 RIP 进行直接访问
(3)Director Server作为群集的访问入口,但不作为网关使用
(4)所有的请求报文经由 Director Server,但回复响应报文不能经过 Director Server
(5)Real Server 的网关不允许指向 Director Server IP,即Real Server发送的数据包不允许经过 Director Server
(6)Real Server 上的 lo 接口配置 VIP 的 IP 地址
DR集群的ARP问题
问题1
在LVS-DR负载均衡群集中,负载均衡器与节点服务器都要配置相同的VIP地址,在局域网中具有相同的IP地址,势必会造成各服务器ARP通信的紊乱;
当ARP广播发送到LVS-DR集群时,因为负载均衡器和节点服务器都是连接到相同的网络上,它们都会接收到ARP广播,但是应该只有前端的负载均衡器进行响应,其他节点服务器不应该响应ARP广播
解决办法
对节点服务器进行处理,使其不响应针对VIP的ARP请求
使用虚接口lo:0承载VIP地址
设置内核参数arp_ignore=1:代表系统只响应目的IP为本地IP的ARP请求
问题2
RealServer返回报文(源IP是VIP)经路由器转发,重新封装报文时,需要先获取路由器的MAC地址,发送ARP请求时,Linux默认使用IP包的源IP地址(即VIP)作为ARP请求包中的源IP地址,此时路由器的路由表进行更新,VIP的MAC地址由原先的均衡器变为节点服务器,路由器根据ARP表项,会将新来的请求报文转发给节点服务器,导致均衡器的VIP失效,又会造成VIP的紊乱
解决办法
对节点服务器进行处理,设置内核参数arp_announce=2:代表不使用IP包的源地址来设置ARP请求的源地址,而选择发送ens33接口的IP地址
修改/etc/sysctl.conf文件
net.ipv4.conf.lo.arp_ignore = 1
net.ipv4.conf.lo.arp_announce =2
net.ipv4.conf.all.arp_ignore = 1
net.ipv4.conf.all.arp_announce =2
DR模式群集部署
准备工作:
负载均衡调度器:20.0.0.50
Web 服务器1:20.0.0.60
Web 服务器2:20.0.0.70NFS共享存储
vip:192.168.10.180
配置负载调度器(20.0.0.50)
systemctl stop firewalld.service
setenforce 0
modprobe ip_vs
cat /proc/net/ip_vs
yum -y install ipvsadm(1)配置虚拟 IP 地址(VIP:20.0.0.126)
cd /etc/sysconfig/network-scripts/
cp ifcfg-ens33 ifcfg-ens33:0 #若隧道模式,复制为ifcfg-tunl0
vim ifcfg-ens33:0
DEVICE=ens33:0
ONBOOT=yes
IPADDR=20.0.0.126
NETMASK=255.255.255.255ifup ens33:0
ifconfig ens33:0(2)调整 proc 响应参数
#由于 LVS 负载调度器和各节点需要共用 VIP 地址,需要关闭 icmp 的重定向,不充当路由器。
vim /etc/sysctl.conf
net.ipv4.ip_forward = 0
net.ipv4.conf.all.send_redirects = 0
net.ipv4.conf.default.send_redirects = 0
net.ipv4.conf.ens33.send_redirects = 0sysctl -p(3)配置负载分配策略
ipvsadm-save > /etc/sysconfig/ipvsadm
systemctl start ipvsadmipvsadm -C
ipvsadm -A -t 20.0.0.126:80 -s rr
ipvsadm -a -t 20.0.0.126:80 -r 20.0.0.60:80 -g #若隧道模式,-g替换为-i
ipvsadm -a -t 20.0.0.126:80 -r 20.0.0.70:80 -g
ipvsadmipvsadm -ln #查看节点状态,Route代表 DR模式
部署共享存储(NFS服务器:20.0.0.80)
systemctl stop firewalld.service
setenforce 0#安装服务创建共享目录
yum -y install nfs-utils rpcbind
mkdir /opt/kgc /opt/benet
chmod 777 /opt/kgc /opt/benet#指定了共享目录的访问权限和同步方式
vim /etc/exports
/usr/share *(ro,sync)
/opt/kgc 20.0.0.0/24(rw,sync)
/opt/benet 20.0.0.0/24(rw,sync)systemctl start nfs.service
systemctl start rpcbind.service
配置节点服务器(20.0.0.60 20.0.0.70)
systemctl stop firewalld.service
setenforce 0 (1)配置虚拟 IP 地址(VIP:20.0.0.126)
#此地址仅用作发送 Web响应数据包的源地址,并不需要监听客户机的访问请求(改由调度器监听并分发)。因此使用虚接口 lo∶0 来承载 VIP 地址,并为本机添加一条路由记录,将访问 VIP 的数据限制在本地,以避免通信紊乱。
cd /etc/sysconfig/network-scripts/
cp ifcfg-lo ifcfg-lo:0
vim ifcfg-lo:0
DEVICE=lo:0
ONBOOT=yes
IPADDR=20.0.0.126
NETMASK=255.255.255.255 #注意:子网掩码必须全为 1ifup lo:0
ifconfig lo:0
route add -host 20.0.0.126 dev lo:0#永久写入方法
vim /etc/rc.local:
/sbin/route add -host 20.0.0.126 dev lo:0chmod +x /etc/rc.d/rc.local(2)调整内核的 ARP 响应参数以阻止更新 VIP 的 MAC 地址,避免发生冲突
vim /etc/sysctl.conf
......
net.ipv4.conf.lo.arp_ignore = 1 #系统只响应目的IP为本地IP的ARP请求
net.ipv4.conf.lo.arp_announce = 2 #系统不使用IP包的源地址来设置ARP请求的源地址,而选择发送接口的IP地址
net.ipv4.conf.all.arp_ignore = 1
net.ipv4.conf.all.arp_announce = 2sysctl -p或者
echo "1" >/proc/sys/net/ipv4/conf/lo/arp_ignore
echo "2" >/proc/sys/net/ipv4/conf/lo/arp_announce
echo "1" >/proc/sys/net/ipv4/conf/all/arp_ignore
echo "2" >/proc/sys/net/ipv4/conf/all/arp_announcesysctl -pyum -y install nfs-utils rpcbind httpd
systemctl start rpcbind
systemctl start httpd--20.0.0.60---
mount.nfs 20.0.0.80:/opt/kgc /var/www/html
echo 'this is kgc web!' > /var/www/html/index.html--20.0.0.70---
mount.nfs 20.0.0.80:/opt/benet /var/www/html
echo 'this is benet web!' > /var/www/html/index.html
在客户端使用浏览器访问 http://20.0.0.126/
面试
简述LVS三种工作模式,简述他们的区别?
答案:
NAT:通过网络地址转换实现的虚拟服务器,大并发访问时,调度器的性能成为瓶颈
DR:使用路由技术实现虚拟服务器,节点服务器需要配置VIP,注意MAC地址广播
TUN:通过隧道方式实现虚拟服务器。
列举你知道的LVS调度算法?
答案:
轮询(Round Robin);
加权轮询(Weighted Round Robin);
最少连接(Least Connections);
加权最少连接(Weighted Least Connections);
源地址哈希值(source hash)。
LVS调度器常见算法(均衡策略)?
LVS调度器用的调度方法基本分为两类:
固定调度算法:rr,wrr,dh,sh
rr:轮询算法,将请求依次分配给不同的rs节点,即RS节点中均摊分配。适合于RS所有节点处理性能接近的情况。
wrr:加权轮训调度,依据不同RS的权值分配任务。权值较高的RS将优先获得任务,并且分配到的连接数将比权值低的RS更多。相同权值的RS得到相同数目的连接数。
dh:目的地址哈希调度(destination hashing)以目的地址为关键字查找一个静态hash表来获得所需RS。
sh:源地址哈希调度(source hashing)以源地址为关键字查找一个静态hash表来获得需要的RS。动态调度算法:wlc,lc,lblc
wlc:加权最小连接数调度,假设各台RS的权值依次为Wi,当前tcp连接数依次为Ti,依次去Ti/Wi为最小的RS作为下一个分配的RS。
lc:最小连接数调度(least-connection),IPVS表存储了所有活动的连接。LB会比较将连接请求发送到当前连接最少的RS。
lblc:基于地址的最小连接数调度(locality-based least-connection):将来自同一个目的地址的请求分配给同一台RS,此时这台服务器是尚未满负荷的。否则就将这个请求分配给连接数最小的RS,并以它作为下一次分配的首先考虑。
相关文章:
部署LVS-DR群集
LVS的工作模式及工作过程 LVS 有三种负载均衡的模式,分别是VS/NAT(nat 模式)、VS/DR(路由模式)、VS/TUN(隧道模式)。 1、NAT模式(VS-NAT) 原理:首先负载均…...
建库、建表、修改表、复制表、字符类型、数值类型、枚举类型、日期时间类型、检索目录、数据导入命令、数据导入步骤、数据导出命令、非空、默认值、唯一索
Top NSD DBA DAY04 案例1:表管理案例2:数据类型案例3:数据批量处理案例4:表头基本约束 1 案例1:表管理 1.1 问题 建库练习建表练习修改表练习 1.2 方案 在MySQL50主机完成练习。 1.3 步骤 实现此案例需要按照如…...
iview默认样式覆盖
scoped 属性是 HTML5 中的新属性。 当style标签拥有scoped属性时,它的css样式只能用于当前的Vue组件,可以使组件的样式不相互污染。 如果一个项目的所有style标签都加上了scoped属性,相当于实现了样式的模块化。 1、全页面覆盖 不添加scoped…...
System.Text.Encoding不同字符编码之间进行转换
System.Text.Encoding 是 C# 中用于处理字符编码和字符串与字节之间转换的类。它提供了各种静态方法和属性,用于在不同字符编码之间进行转换,以及将字符串转换为字节数组或反之。 在处理多语言文本、文件、网络通信以及其他字符数据的场景中,…...

计组 | DMA
前言 记录一些计组相关联的题集与知识点,方便记忆与理解。 DMA 采用DMA方式传送数据时,每传送一个数据就要用一个( C)时间。 A 指令周期 B 机器周期 C 存储周期 D 总线周期发…...
在服务器开jupyter notebook server
参考 https://blog.csdn.net/qq_23869697/article/details/124178117https://blog.csdn.net/m0_37201243/article/details/122531675 1、安装notebook pip install notebook 2、生成配置文件 jupyter notebook --generate-config生成的配置文件,在linux下的路径…...
Jetpack 中的 databinding - 使用篇
什么叫databinding 数据绑定库是一种支持库,借助该库,您可以使用声明性格式(而非程序化地)将布局中的界面组件绑定到应用中的数据源。使用数据绑定可以简化 findViewById 。 如何使用 应用模块下 build.gradle 文件中添加 data…...

C++之signal信号应用实例(一百七十六)
简介: CSDN博客专家,专注Android/Linux系统,分享多mic语音方案、音视频、编解码等技术,与大家一起成长! 优质专栏:Audio工程师进阶系列【原创干货持续更新中……】🚀 人生格言: 人生…...

【数据分析入门】Numpy进阶
目录 一、数据重塑1.1 透视1.2 透视表1.3 堆栈/反堆栈1.3 融合 二、迭代三、高级索引3.1 基础选择3.2 通过isin选择3.3 通过Where选择3.4 通过Query选择3.5 设置/取消索引3.6 重置索引3.6.1 前向填充3.6.2 后向填充 3.7 多重索引 四、重复数据五、数据分组5.1 聚合5.2 转换 六、…...

数据结构的图存储结构
目录 数据结构的图存储结构 图存储结构基本常识 弧头和弧尾 入度和出度 (V1,V2) 和 的区别,v2> 集合 VR 的含义 路径和回路 权和网的含义 图存储结构的分类 什么是连通图,(强)连通图详解 强连通图 什么是生成树,生…...

爬虫IP时效问题:优化爬虫IP使用效果实用技巧
目录 1. 使用稳定的代理IP服务提供商: 2. 定期检测代理IP的可用性: 3. 配置合理的代理IP切换策略: 4. 使用代理IP池: 5. 考虑代理IP的地理位置和速度: 6. 设置合理的请求间隔和并发量: 总结 在爬虫过…...

【uniapp】picker mode=“region“ 最简单的省市区 三级联动
省市区 picker template <picker mode"region" :value"date" class"u-w-440" change"bindTimeChange"><u--inputborder"bottom"class"u-fb u-f-s-28"placeholder"请选择省市区"type"te…...

解决Java中的“Unchecked cast: java.lang.Object to java.util.List”问题
🌷🍁 博主猫头虎 带您 Go to New World.✨🍁 🦄 博客首页——猫头虎的博客🎐 🐳《面试题大全专栏》 文章图文并茂🦕生动形象🦖简单易学!欢迎大家来踩踩~🌺 &a…...

我的创作纪念日(128天)
机缘 CSDN账号创建已有3年了,本篇是第一篇纪念文。。。有点偷懒的感觉了。。。 从第一篇文章的发布,到现在已经过了128天了,回想起当时发布文章的原因,仅仅只是因为找不到合适的云笔记,鬼使神差的想到了CSDNÿ…...

30W IP网络有源音箱 校园广播音箱
SV-7042XT是深圳锐科达电子有限公司的一款2.0声道壁挂式网络有源音箱,具有10/100M以太网接口,可将网络音源通过自带的功放和喇叭输出播放,可达到功率30W。同时它可以外接一个30W的无源副音箱,用在面积较大的场所。5寸进口全频低音…...

什么是DNS服务器的层次化和分布式?
DNS (Domain Name System) 的结构是层次化的,意味着它是由多个级别的服务器组成,每个级别负责不同的部分。以下是 DNS 结构的层次: 根域服务器(Root Servers): 这是 DNS 层次结构的最高级别。全球有13组根域…...
Django图书商城系统实战开发-部署上线操作
Django图书商城系统实战开发-打包部署 技术背景掌握 当你需要在服务器上部署Web应用程序时,Nginx是一个强大且常用的选择。Nginx是一个高性能的Web服务器和反向代理服务器,它可以处理大量的并发连接,并提供负载均衡、缓存、SSL等功能。下面…...

Springboot 实践(1)MyEclipse2019创建maven工程
项目讲解步骤,基于本机已经正确安装Java 1.8.0及MyEclipse2019的基础之上,Java及MyEclipse的安装,请参考其他相关文档,Springboot 实践文稿不再赘述。项目创建讲解马上开始。 一、首先打开MyEclipse2019,进入工作空间选…...
41 | 京东商家书籍评论数据分析
京东作为中国领先的电子商务平台,积累了大量商品评论数据,这些数据蕴含了丰富的信息。通过文本数据分析,我们可以了解用户对产品的态度、评价的关键词、消费者的需求等,从而有助于商家优化产品和服务,以及消费者作出更明智的购买决策。 本文将详细阐述如何获取京东商家评…...

【数据挖掘】如何保证数据一致性?
一、说明 我曾经在网络分析服务公司担任数据分析师。此类系统可帮助网站收集和分析客户行为数据。 不言而喻,数据是网络分析服务最宝贵的价值。我的主要目标之一是监控数据质量。 为了确保数据一切正常,我们需要关注两件事: 没有丢失或重复的…...

Mybatis逆向工程,动态创建实体类、条件扩展类、Mapper接口、Mapper.xml映射文件
今天呢,博主的学习进度也是步入了Java Mybatis 框架,目前正在逐步杨帆旗航。 那么接下来就给大家出一期有关 Mybatis 逆向工程的教学,希望能对大家有所帮助,也特别欢迎大家指点不足之处,小生很乐意接受正确的建议&…...

抖音增长新引擎:品融电商,一站式全案代运营领跑者
抖音增长新引擎:品融电商,一站式全案代运营领跑者 在抖音这个日活超7亿的流量汪洋中,品牌如何破浪前行?自建团队成本高、效果难控;碎片化运营又难成合力——这正是许多企业面临的增长困局。品融电商以「抖音全案代运营…...
电脑插入多块移动硬盘后经常出现卡顿和蓝屏
当电脑在插入多块移动硬盘后频繁出现卡顿和蓝屏问题时,可能涉及硬件资源冲突、驱动兼容性、供电不足或系统设置等多方面原因。以下是逐步排查和解决方案: 1. 检查电源供电问题 问题原因:多块移动硬盘同时运行可能导致USB接口供电不足&#x…...

BCS 2025|百度副总裁陈洋:智能体在安全领域的应用实践
6月5日,2025全球数字经济大会数字安全主论坛暨北京网络安全大会在国家会议中心隆重开幕。百度副总裁陈洋受邀出席,并作《智能体在安全领域的应用实践》主题演讲,分享了在智能体在安全领域的突破性实践。他指出,百度通过将安全能力…...
【RockeMQ】第2节|RocketMQ快速实战以及核⼼概念详解(二)
升级Dledger高可用集群 一、主从架构的不足与Dledger的定位 主从架构缺陷 数据备份依赖Slave节点,但无自动故障转移能力,Master宕机后需人工切换,期间消息可能无法读取。Slave仅存储数据,无法主动升级为Master响应请求ÿ…...

智能仓储的未来:自动化、AI与数据分析如何重塑物流中心
当仓库学会“思考”,物流的终极形态正在诞生 想象这样的场景: 凌晨3点,某物流中心灯火通明却空无一人。AGV机器人集群根据实时订单动态规划路径;AI视觉系统在0.1秒内扫描包裹信息;数字孪生平台正模拟次日峰值流量压力…...

select、poll、epoll 与 Reactor 模式
在高并发网络编程领域,高效处理大量连接和 I/O 事件是系统性能的关键。select、poll、epoll 作为 I/O 多路复用技术的代表,以及基于它们实现的 Reactor 模式,为开发者提供了强大的工具。本文将深入探讨这些技术的底层原理、优缺点。 一、I…...

Android 之 kotlin 语言学习笔记三(Kotlin-Java 互操作)
参考官方文档:https://developer.android.google.cn/kotlin/interop?hlzh-cn 一、Java(供 Kotlin 使用) 1、不得使用硬关键字 不要使用 Kotlin 的任何硬关键字作为方法的名称 或字段。允许使用 Kotlin 的软关键字、修饰符关键字和特殊标识…...
C#学习第29天:表达式树(Expression Trees)
目录 什么是表达式树? 核心概念 1.表达式树的构建 2. 表达式树与Lambda表达式 3.解析和访问表达式树 4.动态条件查询 表达式树的优势 1.动态构建查询 2.LINQ 提供程序支持: 3.性能优化 4.元数据处理 5.代码转换和重写 适用场景 代码复杂性…...
FOPLP vs CoWoS
以下是 FOPLP(Fan-out panel-level packaging 扇出型面板级封装)与 CoWoS(Chip on Wafer on Substrate)两种先进封装技术的详细对比分析,涵盖技术原理、性能、成本、应用场景及市场趋势等维度: 一、技术原…...