当前位置: 首页 > news >正文

神经网络基础-神经网络补充概念-35-为什么正则化可以减少过拟合

概念

正则化可以减少过拟合的原因在于它通过限制模型的复杂性来约束参数的取值范围,从而提高了模型的泛化能力。过拟合是指模型在训练集上表现很好,但在未见过的数据上表现不佳,这通常是因为模型过于复杂,过多地拟合了训练数据中的噪声和细节,从而导致了泛化能力的下降。

正则化的作用机制

正则化的作用机制如下:

限制参数大小:正则化通过在损失函数中添加参数的惩罚项,使得模型倾向于选择较小的参数值。这有助于防止某些参数过大,从而减少了模型对训练数据中噪声的敏感性。

特征选择:在 L1 正则化中,惩罚项会使得某些参数变为零,从而实现了特征选择,即自动筛选掉对模型不重要的特征。这有助于剔除掉不必要的信息,提高模型对数据真实模式的捕捉能力。

平滑模型:正则化可以使模型参数分布更加平滑,减少了参数间的剧烈变化。这有助于降低模型的复杂度,减少过拟合的风险。

综上所述,正则化通过控制模型的复杂性,使其更加平滑和稳定,从而减少了对训练数据中噪声的过度拟合,提高了模型在未见过的数据上的泛化能力。正则化是防止过拟合的重要工具之一,在训练机器学习和深度学习模型时,合适的正则化方法可以帮助提升模型的性能和稳定性。

相关文章:

神经网络基础-神经网络补充概念-35-为什么正则化可以减少过拟合

概念 正则化可以减少过拟合的原因在于它通过限制模型的复杂性来约束参数的取值范围,从而提高了模型的泛化能力。过拟合是指模型在训练集上表现很好,但在未见过的数据上表现不佳,这通常是因为模型过于复杂,过多地拟合了训练数据中…...

Glide 的超时控制相关处理

作者:newki 前言 Glide 相信大家都不陌生,各种源码分析,使用介绍大家应该都是烂熟于心。但是设置 Glide 的超时问题大家遇到过没有。 我遇到了,并且掉坑里了,情况是这样的。 调用接口从网络拉取用户头像&#xff0c…...

使用requests如何实现自动登录

不知道大家有没有注意到,好多网站我们登录过后,在之后的某段时间内访问该网页时,不会给出请登录的提示,时间到期后就会提示请登录!这样在使用爬虫访问网页时还要登录,打乱我们的节奏,那么如何使…...

【代码随想录-Leetcode第六题:209. 长度最小的子数组】

209. 长度最小的子数组 题目思路代码实现 题目 给定一个含有 n 个正整数的数组和一个正整数 target 。 找出该数组中满足其和 ≥ target 的长度最小的 连续子数组 [numsl, numsl1, …, numsr-1, numsr] ,并返回其长度。如果不存在符合条件的子数组,返回…...

部署LVS-DR群集

LVS的工作模式及工作过程 LVS 有三种负载均衡的模式,分别是VS/NAT(nat 模式)、VS/DR(路由模式)、VS/TUN(隧道模式)。 1、NAT模式(VS-NAT) 原理:首先负载均…...

建库、建表、修改表、复制表、字符类型、数值类型、枚举类型、日期时间类型、检索目录、数据导入命令、数据导入步骤、数据导出命令、非空、默认值、唯一索

Top NSD DBA DAY04 案例1:表管理案例2:数据类型案例3:数据批量处理案例4:表头基本约束 1 案例1:表管理 1.1 问题 建库练习建表练习修改表练习 1.2 方案 在MySQL50主机完成练习。 1.3 步骤 实现此案例需要按照如…...

iview默认样式覆盖

scoped 属性是 HTML5 中的新属性。 当style标签拥有scoped属性时,它的css样式只能用于当前的Vue组件,可以使组件的样式不相互污染。 如果一个项目的所有style标签都加上了scoped属性,相当于实现了样式的模块化。 1、全页面覆盖 不添加scoped…...

System.Text.Encoding不同字符编码之间进行转换

System.Text.Encoding 是 C# 中用于处理字符编码和字符串与字节之间转换的类。它提供了各种静态方法和属性,用于在不同字符编码之间进行转换,以及将字符串转换为字节数组或反之。 在处理多语言文本、文件、网络通信以及其他字符数据的场景中&#xff0c…...

计组 | DMA

前言 记录一些计组相关联的题集与知识点,方便记忆与理解。 DMA 采用DMA方式传送数据时,每传送一个数据就要用一个( C)时间。 A 指令周期 B 机器周期 C 存储周期 D 总线周期发…...

在服务器开jupyter notebook server

参考 https://blog.csdn.net/qq_23869697/article/details/124178117https://blog.csdn.net/m0_37201243/article/details/122531675 1、安装notebook pip install notebook 2、生成配置文件 jupyter notebook --generate-config生成的配置文件,在linux下的路径…...

Jetpack 中的 databinding - 使用篇

什么叫databinding 数据绑定库是一种支持库,借助该库,您可以使用声明性格式(而非程序化地)将布局中的界面组件绑定到应用中的数据源。使用数据绑定可以简化 findViewById 。 如何使用 应用模块下 build.gradle 文件中添加 data…...

C++之signal信号应用实例(一百七十六)

简介: CSDN博客专家,专注Android/Linux系统,分享多mic语音方案、音视频、编解码等技术,与大家一起成长! 优质专栏:Audio工程师进阶系列【原创干货持续更新中……】🚀 人生格言: 人生…...

【数据分析入门】Numpy进阶

目录 一、数据重塑1.1 透视1.2 透视表1.3 堆栈/反堆栈1.3 融合 二、迭代三、高级索引3.1 基础选择3.2 通过isin选择3.3 通过Where选择3.4 通过Query选择3.5 设置/取消索引3.6 重置索引3.6.1 前向填充3.6.2 后向填充 3.7 多重索引 四、重复数据五、数据分组5.1 聚合5.2 转换 六、…...

数据结构的图存储结构

目录 数据结构的图存储结构 图存储结构基本常识 弧头和弧尾 入度和出度 (V1,V2) 和 的区别,v2> 集合 VR 的含义 路径和回路 权和网的含义 图存储结构的分类 什么是连通图,(强)连通图详解 强连通图 什么是生成树,生…...

爬虫IP时效问题:优化爬虫IP使用效果实用技巧

目录 1. 使用稳定的代理IP服务提供商: 2. 定期检测代理IP的可用性: 3. 配置合理的代理IP切换策略: 4. 使用代理IP池: 5. 考虑代理IP的地理位置和速度: 6. 设置合理的请求间隔和并发量: 总结 在爬虫过…...

【uniapp】picker mode=“region“ 最简单的省市区 三级联动

省市区 picker template <picker mode"region" :value"date" class"u-w-440" change"bindTimeChange"><u--inputborder"bottom"class"u-fb u-f-s-28"placeholder"请选择省市区"type"te…...

解决Java中的“Unchecked cast: java.lang.Object to java.util.List”问题

&#x1f337;&#x1f341; 博主猫头虎 带您 Go to New World.✨&#x1f341; &#x1f984; 博客首页——猫头虎的博客&#x1f390; &#x1f433;《面试题大全专栏》 文章图文并茂&#x1f995;生动形象&#x1f996;简单易学&#xff01;欢迎大家来踩踩~&#x1f33a; &a…...

我的创作纪念日(128天)

机缘 CSDN账号创建已有3年了&#xff0c;本篇是第一篇纪念文。。。有点偷懒的感觉了。。。 从第一篇文章的发布&#xff0c;到现在已经过了128天了&#xff0c;回想起当时发布文章的原因&#xff0c;仅仅只是因为找不到合适的云笔记&#xff0c;鬼使神差的想到了CSDN&#xff…...

30W IP网络有源音箱 校园广播音箱

SV-7042XT是深圳锐科达电子有限公司的一款2.0声道壁挂式网络有源音箱&#xff0c;具有10/100M以太网接口&#xff0c;可将网络音源通过自带的功放和喇叭输出播放&#xff0c;可达到功率30W。同时它可以外接一个30W的无源副音箱&#xff0c;用在面积较大的场所。5寸进口全频低音…...

什么是DNS服务器的层次化和分布式?

DNS (Domain Name System) 的结构是层次化的&#xff0c;意味着它是由多个级别的服务器组成&#xff0c;每个级别负责不同的部分。以下是 DNS 结构的层次&#xff1a; 根域服务器&#xff08;Root Servers&#xff09;&#xff1a; 这是 DNS 层次结构的最高级别。全球有13组根域…...

Django图书商城系统实战开发-部署上线操作

Django图书商城系统实战开发-打包部署 技术背景掌握 当你需要在服务器上部署Web应用程序时&#xff0c;Nginx是一个强大且常用的选择。Nginx是一个高性能的Web服务器和反向代理服务器&#xff0c;它可以处理大量的并发连接&#xff0c;并提供负载均衡、缓存、SSL等功能。下面…...

Springboot 实践(1)MyEclipse2019创建maven工程

项目讲解步骤&#xff0c;基于本机已经正确安装Java 1.8.0及MyEclipse2019的基础之上&#xff0c;Java及MyEclipse的安装&#xff0c;请参考其他相关文档&#xff0c;Springboot 实践文稿不再赘述。项目创建讲解马上开始。 一、首先打开MyEclipse2019&#xff0c;进入工作空间选…...

41 | 京东商家书籍评论数据分析

京东作为中国领先的电子商务平台,积累了大量商品评论数据,这些数据蕴含了丰富的信息。通过文本数据分析,我们可以了解用户对产品的态度、评价的关键词、消费者的需求等,从而有助于商家优化产品和服务,以及消费者作出更明智的购买决策。 本文将详细阐述如何获取京东商家评…...

【数据挖掘】如何保证数据一致性?

一、说明 我曾经在网络分析服务公司担任数据分析师。此类系统可帮助网站收集和分析客户行为数据。 不言而喻&#xff0c;数据是网络分析服务最宝贵的价值。我的主要目标之一是监控数据质量。 为了确保数据一切正常&#xff0c;我们需要关注两件事&#xff1a; 没有丢失或重复的…...

深度学习AIGC问答

文章目录 **.pt 和 .pth 文件区别**.pkl 和 .pth 区别深度学习中.ckpt .h5 文件的区别深度学习中.ckpt .pth 文件的区别TensorFlow框架和keras框架的区别、和关系 Pytorch模型 .pt, .pth的存加载方式 pytorch解析.pth模型文件 .pt 和 .pth 文件区别 在深度学习中&#xff0c;.…...

大数据第二阶段测试(二)

1.接到需求之后的开发流程是什么&#xff1f; 参考答案一 接到需求后的开发流程一般包括需求分析、设计、编码、测试和部署等步骤。首先&#xff0c;对需求进行全面的分析&#xff0c;明确需求的背景、目标和功能。然后&#xff0c;根据需求进行系统设计&#xff0c;包括数据库…...

【mysql报错解决】MySql.Data.MySqlClient.MySqlException (0x80004005)或1366

场景&#xff1a;c#使用mysql数据库执行数据库迁移&#xff0c;使用了新增inserter的语句&#xff0c;然后报错 报错如下&#xff1a; 1.MySql.Data.MySqlClient.MySqlException (0x80004005): Incorrect string value: ‘\xE6\x9B\xB4\xE6\x94\xB9…’ for column ‘Migratio…...

Kafka-eagle监控平台

Kafka-Eagle简介 在开发工作中&#xff0c;当业务不复杂时&#xff0c;可以使用Kafka命令来进行一些集群的管理工作。但如果业务变得复杂&#xff0c;例如&#xff1a;需要增加group、topic分区&#xff0c;此时&#xff0c;再使用命令行就感觉很不方便&#xff0c;此时&#x…...

ubuntu16.04制作本地apt源离线安装

一、首先在有外网的服务器安装需要安装的软件&#xff0c;打包deb软件。 cd /var/cache/apt zip -r archives.zip archives sz archives.zip 二、在无外网服务器上传deb包&#xff0c;并配置apt源。 1、上传deb包安装lrzsz、unzip 用ftp软件连接无外网服务器协议选择sftp…...

【Leetcode】91.解码方法

一、题目 1、题目描述 一条包含字母 A-Z 的消息通过以下映射进行了 编码 : A -> "1" B -> "2" ... Z -> "26"要 解码 已编码的消息,所有数字必须基于上述映射的方法,反向映射回字母(可能有多种方法)。例如,"11106" …...