机器学习深度学习——transformer(机器翻译的再实现)
👨🎓作者简介:一位即将上大四,正专攻机器学习的保研er
🌌上期文章:机器学习&&深度学习——自注意力和位置编码(数学推导+代码实现)
📚订阅专栏:机器学习&&深度学习
希望文章对你们有所帮助
transformer(机器翻译的再实现)
- 引入
- 模型
- 基于位置的前馈网络
- 残差连接和层规范化
- 为何使用层规范化
- 编码器
- 解码器
- 训练
- 小结
引入
上一节比较了CNN、RNN和self-attention。容易知道,自注意力同时具有并行计算力强和最大路径长度的两个有点,因此使用self-attention来设计模型架构是很有吸引力的。
而transformer模型就是完全基于注意力机制,且其没有任何的卷积层和循环神经网络层。transformer最初是应用在文本数据上的序列到序列学习,现在也已经推广到了语言、视觉、语音和强化学习等领域。
而在之前,我们已经使用了seq2seq来实现了英语到法语的翻译,那时候发现训练后的效果并不是很好,接下来将边讲解transformer边用transformer来进行机器翻译。
模型
transformer是编码器-解码器架构的一个实例,整体实例的架构图如下所示:

可以看出transformer的编码器和解码器时基于自注意力的模块叠加而成的,源(输入)序列和目标(输出)序列的嵌入(embedding)表示将加上位置编码,再分别输入到编码器和解码器中。
宏观角度上进行结构上的解释,transformer的编码器是由多个相同的层叠加而成的,每个层都有两个子层(sublayer)。第一个子层是多头注意力(multi-head self-attention)池化;第二个子层是基于位置的前馈网络(positionwise feed-forward network(FFT))。也就是说,计算编码器的自注意力时,查询、键和值都来自前一个编码器层的输出。
受残差网络ResNet的启发(具体可以自行去了解一下原理,主要优点是残差网络的使用使得模型更容易优化),每个子层都使用了残差连接。在transformer中,对于序列中任何位置的任何输入x∈Rd,都要求满足sublayer(x)∈Rd,一遍残差连接满足x+sublayer(x)∈Rd。在残差连接的加法运算后,要紧接着进行应用层规范化(layer normalization)。因此,输入序列对应的每个位置,编码器都将输出一个d维表示向量。
transformer的解码器也是由多个相同的层叠加而成的,也使用了残差连接和层规范化。除了编码器中描述的两个子层之外,解码器还在这两个子层之间插入了第三个子层,称为编码器-解码器注意力层。这个层的query为前一解码器层的输出,而key和value都是来自编码器的输出。在解码器自注意力中,query、key、value都来自上一个解码器层的输出。但是解码器中的每个位置只能考虑该位置之前的所有位置,这和我们之前见过的掩蔽很相似,事实上这种掩蔽注意力就保留了自回归属性,确保预测仅仅依赖于已生成的输出词元。
import math
import pandas as pd
import torch
from torch import nn
from d2l import torch as d2l
基于位置的前馈网络
基于位置的前馈网络对序列中的所有位置的表示进行变换时使用的是同一个多层感知机(MLP),这就是称前馈网络是基于位置的原因。下面进行实现,下面代码中,输入X的形状为(批量大小,时间步数或序列长度,隐单元数或特征维度)将被一个两层感知机转换成形状为(批量大小,时间步数,ffn_num_outputs)的输出张量。
#@save
class PositionWiseFFN(nn.Module):"""基于位置的前馈网络"""def __init__(self, ffn_num_input, ffn_num_hiddens, ffn_num_outputs,**kwargs):super(PositionWiseFFN, self).__init__(**kwargs)self.dense1 = nn.Linear(ffn_num_input, ffn_num_hiddens)self.relu = nn.ReLU()self.dense2 = nn.Linear(ffn_num_hiddens, ffn_num_outputs)def forward(self, X):return self.dense2(self.relu(self.dense1(X)))
残差连接和层规范化
现在关注加法和规范化(add&norm)组件,如前面所说,这是由残差连接和紧随其后的层规范化组成的,这两个都是关键。
规范化也叫归一化,他将其改变成均值为0方差为1。
在计算机视觉中,常用批量规范化,也就是在一个小批量的样本内基于批量规范化对数据进行重新中心化和重新缩放的调整。层规范化是基于特征维度进行规范化。而在NLP(输入通常是变长序列)中通常使用层规范化。
为何使用层规范化
也就是为啥使用LayerNorm而不使用BatchNorm呢?如下图:

其中,b为batch_size也就是批量大小,len是指代序列的长度。
那么我们知道,批量规范化是对每个特征/通道里的元素进行归一化,把d规范化了,len留着,但是对于序列长度会变的NLP并不适合,这样就会不稳定。
而层规范化则是对每个样本里面的元素进行规范化,相对更稳定。
通过以下的代码来对比不同维度的层规范化和批量规范化的效果:
ln = nn.LayerNorm(2)
bn = nn.BatchNorm1d(2)
X = torch.tensor([[1, 2], [2, 3]], dtype=torch.float32)
# 在训练模式下计算X的均值和方差
print('layer norm:', ln(X), '\nbatch norm:', bn(X))
运行结果:

可以很清楚看出来,使用层规范化以后,会对每一个批量中的每一个样本的不同特征来进行规范化;使用批量规范化以后,会对每一个批量中的每个样本的同一特征来进行规范化。
接着就可以使用残差连接和层规范化来实现AddNorm类,dropout也被作为正则化方法使用:
#@save
class AddNorm(nn.Module):"""残差连接后进行层规范化"""def __init__(self, normalized_shape, dropout, **kwargs):super(AddNorm, self).__init__(**kwargs)self.dropout = nn.Dropout(dropout)self.ln = nn.LayerNorm(normalized_shape)def forward(self, X, Y):return self.ln(self.dropout(Y) + X)
残差连接要求两个输入的形状相同,以便加法操作后输出张量的形状相同。
add_norm = AddNorm([3, 4], 0.5)
add_norm.eval()
print(add_norm(torch.ones((2, 3, 4)), torch.ones((2, 3, 4))).shape)
输出结果:
torch.Size([2, 3, 4])
编码器
有了组成Transformer编码器的基础组件,现在可以先实现编码器中的一个层。下面的EncoderBlock类包含两个子层:多头自注意力和基于位置的前馈网络,这两个子层都使用了残差连接和紧随的层规范化。
#@save
class EncoderBlock(nn.Module):"""Transformer编码器块"""def __init__(self, key_size, query_size, value_size, num_hiddens,norm_shape, ffn_num_input, ffn_num_hiddens, num_heads,dropout, use_bias=False, **kwargs):super(EncoderBlock, self).__init__(**kwargs)self.attention = d2l.MultiHeadAttention(key_size, query_size, value_size, num_hiddens, num_heads, dropout,use_bias)self.addnorm1 = AddNorm(norm_shape, dropout)self.ffn = PositionWiseFFN(ffn_num_input, ffn_num_hiddens, num_hiddens)self.addnorm2 = AddNorm(norm_shape, dropout)def forward(self, X, valid_lens):Y = self.addnorm1(X, self.attention(X, X, X, valid_lens))return self.addnorm2(Y, self.ffn(Y))
下面实现的Transformer编码器的代码中,堆叠了num_layers个EncoderBlock类的实例。由于这里使用的是值范围在-1和1之间的固定位置编码,因此通过学习得到的输入的嵌入表示的值需要先乘以嵌入维度的平方根进行重新缩放,然后再与位置编码相加。
#@save
class TransformerEncoder(d2l.Encoder):"""Transformer编码器"""def __init__(self, vocab_size, key_size, query_size, value_size,num_hiddens, norm_shape, ffn_num_input, ffn_num_hiddens,num_heads, num_layers, dropout, use_bias=False, **kwargs):super(TransformerEncoder, self).__init__(**kwargs)self.num_hiddens = num_hiddensself.embedding = nn.Embedding(vocab_size, num_hiddens)self.pos_encoding = d2l.PositionalEncoding(num_hiddens, dropout)self.blks = nn.Sequential()for i in range(num_layers):self.blks.add_module("block"+str(i),EncoderBlock(key_size, query_size, value_size, num_hiddens,norm_shape, ffn_num_input, ffn_num_hiddens,num_heads, dropout, use_bias))def forward(self, X, valid_lens, *args):# 因为位置编码值在-1和1之间,# 因此嵌入值乘以嵌入维度的平方根进行缩放,# 然后再与位置编码相加。X = self.pos_encoding(self.embedding(X) * math.sqrt(self.num_hiddens))self.attention_weights = [None] * len(self.blks)for i, blk in enumerate(self.blks):X = blk(X, valid_lens)self.attention_weights[i] = blk.attention.attention.attention_weightsreturn X
解码器
Transformer解码器也是由多个相同的层组成,在DecoderBlock类中实现的每个层包含了三个子层:解码器自注意力、“编码器-解码器”注意力和基于位置的前馈网络。这些子层也都被残差连接和紧随的层规范化围绕。
在掩蔽多头解码器自注意力层(第一个子层)中,查询、键和值都来自上一个解码器层的输出。关于序列到序列模型(sequence-to-sequence model),在训练阶段,其输出序列的所有位置(时间步)的词元都是已知的;然而,在预测阶段,其输出序列的词元是逐个生成的。
因此,在任何解码器时间步中,只有生成的词元才能用于解码器的自注意力计算中。为了在解码器中保留自回归的属性,其掩蔽自注意力设定了参数dec_valid_lens,以便任何查询都只会与解码器中所有已经生成词元的位置(即直到该查询位置为止)进行注意力计算。
class DecoderBlock(nn.Module):"""解码器中第i个块"""def __init__(self, key_size, query_size, value_size, num_hiddens,norm_shape, ffn_num_input, ffn_num_hiddens, num_heads,dropout, i, **kwargs):super(DecoderBlock, self).__init__(**kwargs)self.i = iself.attention1 = d2l.MultiHeadAttention(key_size, query_size, value_size, num_hiddens, num_heads, dropout)self.addnorm1 = AddNorm(norm_shape, dropout)self.attention2 = d2l.MultiHeadAttention(key_size, query_size, value_size, num_hiddens, num_heads, dropout)self.addnorm2 = AddNorm(norm_shape, dropout)self.ffn = PositionWiseFFN(ffn_num_input, ffn_num_hiddens,num_hiddens)self.addnorm3 = AddNorm(norm_shape, dropout)def forward(self, X, state):enc_outputs, enc_valid_lens = state[0], state[1]# 训练阶段,输出序列的所有词元都在同一时间处理,# 因此state[2][self.i]初始化为None。# 预测阶段,输出序列是通过词元一个接着一个解码的,# 因此state[2][self.i]包含着直到当前时间步第i个块解码的输出表示if state[2][self.i] is None:key_values = Xelse:key_values = torch.cat((state[2][self.i], X), axis=1)state[2][self.i] = key_valuesif self.training:batch_size, num_steps, _ = X.shape# dec_valid_lens的开头:(batch_size,num_steps),# 其中每一行是[1,2,...,num_steps]dec_valid_lens = torch.arange(1, num_steps + 1, device=X.device).repeat(batch_size, 1)else:dec_valid_lens = None# 自注意力X2 = self.attention1(X, key_values, key_values, dec_valid_lens)Y = self.addnorm1(X, X2)# 编码器-解码器注意力。# enc_outputs的开头:(batch_size,num_steps,num_hiddens)Y2 = self.attention2(Y, enc_outputs, enc_outputs, enc_valid_lens)Z = self.addnorm2(Y, Y2)return self.addnorm3(Z, self.ffn(Z)), state
现在我们构建了由num_layers个DecoderBlock实例组成的完整的Transformer解码器。最后,通过一个全连接层计算所有vocab_size个可能的输出词元的预测值。解码器的自注意力权重和编码器解码器注意力权重都被存储下来,方便日后可视化的需要。
class TransformerDecoder(d2l.AttentionDecoder):def __init__(self, vocab_size, key_size, query_size, value_size,num_hiddens, norm_shape, ffn_num_input, ffn_num_hiddens,num_heads, num_layers, dropout, **kwargs):super(TransformerDecoder, self).__init__(**kwargs)self.num_hiddens = num_hiddensself.num_layers = num_layersself.embedding = nn.Embedding(vocab_size, num_hiddens)self.pos_encoding = d2l.PositionalEncoding(num_hiddens, dropout)self.blks = nn.Sequential()for i in range(num_layers):self.blks.add_module("block"+str(i),DecoderBlock(key_size, query_size, value_size, num_hiddens,norm_shape, ffn_num_input, ffn_num_hiddens,num_heads, dropout, i))self.dense = nn.Linear(num_hiddens, vocab_size)def init_state(self, enc_outputs, enc_valid_lens, *args):return [enc_outputs, enc_valid_lens, [None] * self.num_layers]def forward(self, X, state):X = self.pos_encoding(self.embedding(X) * math.sqrt(self.num_hiddens))self._attention_weights = [[None] * len(self.blks) for _ in range (2)]for i, blk in enumerate(self.blks):X, state = blk(X, state)# 解码器自注意力权重self._attention_weights[0][i] = blk.attention1.attention.attention_weights# “编码器-解码器”自注意力权重self._attention_weights[1][i] = blk.attention2.attention.attention_weightsreturn self.dense(X), state@propertydef attention_weights(self):return self._attention_weights
训练
依照Transformer架构来实例化编码器-解码器模型。在这里,指定Transformer的编码器和解码器都是2层,都使用4头注意力。为了进行序列到序列的学习,下面将在之前所说的机器翻译数据集上进行transformer模型的训练。
num_hiddens, num_layers, dropout, batch_size, num_steps = 32, 2, 0.1, 64, 10
lr, num_epochs, device = 0.005, 200, d2l.try_gpu()
ffn_num_input, ffn_num_hiddens, num_heads = 32, 64, 4
key_size, query_size, value_size = 32, 32, 32
norm_shape = [32]train_iter, src_vocab, tgt_vocab = d2l.load_data_nmt(batch_size, num_steps)encoder = TransformerEncoder(len(src_vocab), key_size, query_size, value_size, num_hiddens,norm_shape, ffn_num_input, ffn_num_hiddens, num_heads,num_layers, dropout)
decoder = TransformerDecoder(len(tgt_vocab), key_size, query_size, value_size, num_hiddens,norm_shape, ffn_num_input, ffn_num_hiddens, num_heads,num_layers, dropout)
net = d2l.EncoderDecoder(encoder, decoder)
d2l.train_seq2seq(net, train_iter, lr, num_epochs, tgt_vocab, device)
d2l.plt.show()
运行输出:
loss 0.032, 5786.9 tokens/sec on cpu
运行图片:

训练完后,我们可以将一些英语句子翻译成法语,并且计算翻译后的BLEU分数(和之前的seq2seq实现的训练模型一样的计算方式):
engs = ['go .', "i lost .", 'he\'s calm .', 'i\'m home .']
fras = ['va !', 'j\'ai perdu .', 'il est calme .', 'je suis chez moi .']
for eng, fra in zip(engs, fras):translation, dec_attention_weight_seq = d2l.predict_seq2seq(net, eng, src_vocab, tgt_vocab, num_steps, device, True)print(f'{eng} => {translation}, ',f'bleu {d2l.bleu(translation, fra, k=2):.3f}')
运行结果:
go . => va !, bleu 1.000
i lost . => j’ai perdu ., bleu 1.000
he’s calm . => il est mouillé ., bleu 0.658
i’m home . => je suis chez moi ., bleu 1.000
这次的效果比起上一次明显还是好了很多的。
小结
1、Transformer是编码器-解码器架构的一个实践,尽管在实际情况中编码器或解码器可以单独使用。
2、在Transformer中,多头自注意力用于表示输入序列和输出序列,不过解码器必须通过掩蔽机制来保留自回归属性。
3、Transformer中的残差连接和层规范化是训练非常深度模型的重要工具。
4、Transformer模型中基于位置的前馈网络使用同一个多层感知机,作用是对所有序列位置的表示进行转换。
相关文章:
机器学习深度学习——transformer(机器翻译的再实现)
👨🎓作者简介:一位即将上大四,正专攻机器学习的保研er 🌌上期文章:机器学习&&深度学习——自注意力和位置编码(数学推导代码实现) 📚订阅专栏:机器…...
神经网络基础-神经网络补充概念-30-搭建神经网络块
概念 搭建神经网络块是一种常见的做法,它可以帮助你更好地组织和复用网络结构。神经网络块可以是一些相对独立的模块,例如卷积块、全连接块等,用于构建更复杂的网络架构。 代码实现 import numpy as np import tensorflow as tf from tens…...
在线吉他调音
先看效果(图片没有声,可以下载源码看看,比这更好~): 再看代码(查看更多): <!DOCTYPE html> <html lang"en"> <head><meta charset"UTF-8&quo…...
Windows11 Docker Desktop 启动 -wsl kernel version too low
系统环境:windows11 1:docker下载 Docker: Accelerated Container Application Development 下载后双击安装即可 安装后启动Docker提示:Docker Desktop -wsl kernel version too low 处理起来也是非常方便 1:管理员身份启动:…...
Golang 中的 unsafe 包详解
Golang 中的 unsafe 包用于在运行时进行低级别的操作。这些操作通常是不安全的,因为可以打破 Golang 的类型安全性和内存安全性,使用 unsafe 包的程序可能会影响可移植性和兼容性。接下来看下 unsafe 包中的类型和函数。 unsafe.Pointer 类型 通常用于…...
linux 的swap、swappiness及kswapd原理【转+自己理解】
本文讨论的 swap基于Linux4.4内核代码 。Linux内存管理是一套非常复杂的系统,而swap只是其中一个很小的处理逻辑。 希望本文能让读者了解Linux对swap的使用大概是什么样子。阅读完本文,应该可以帮你解决以下问题: swap到底是干嘛的…...
什么是Java中的适配器模式?
Java中的适配器模式(Adapter Pattern)是一种设计模式,它允许我们将一种类的接口转换成另一种类的接口,以便于使用。适配器模式通常用于在不兼容的接口之间提供一种过渡性的接口,从而使代码更加灵活和可维护。 在Java中…...
MYSQL线上无锁添加索引
在需求上线过程中,经常会往一个数据量比较大的数据表中的字段加索引,一张几百万数据的表,加个索引往往要几分钟起步。在这段时间内,保证服务的正常功能运行十分重要,所以需要线上无锁添加索引,即加索引的语…...
如何实现客户自助服务?打造产品知识库
良好的客户服务始于自助服务。根据哈佛商业评论,81% 的客户在联系工作人员之前尝试自己解决问题。92% 的客户表示他们更喜欢使用产品知识库/帮助中心。 所以本文主要探讨了产品知识库是什么,有哪些优势以及如何创建。 产品知识库是什么 产品知识库是将…...
LeetCode环形子数组的最大和(编号918)
目录 一.题目 二.解题思路 三.解题代码 一.题目 918. 环形子数组的最大和 给定一个长度为 n 的环形整数数组 nums ,返回 nums 的非空 子数组 的最大可能和 。 环形数组 意味着数组的末端将会与开头相连呈环状。形式上, nums[i] 的下一个元素是 nums[…...
PhpOffice/PhpSpreadsheet读取和写入Excel
PhpSpreadsheet是一个纯PHP编写的组件库,它使用现代PHP写法,代码质量和性能比PHPExcel高不少,完全可以替代PHPExcel(PHPExcel已不再维护)。使用PhpSpreadsheet可以轻松读取和写入Excel文档,支持Excel的所有…...
jenkins自动化部署Jenkinsfile文件配置
简介 使用jenkins部署时会读取项目中Jenkinsfile文件,文件配置不对会导致部署失败 文件内容 pipeline {agent anyparameters {string(name: project_name, defaultValue: xxx1, description: 项目jar名称)string(name: version, defaultValue: xxx2, description…...
【socket编程简述】TCP UDP 通信总结、TCP连接的三次握手、TCP断开的四次挥手
Socket:Socket被称做 套接字,是网络通信中的一种约定。 Socket编程的应用无处不在,我们平时用的QQ、微信、浏览器等程序.都与Socket编程有关。 三次握手 四次断开 面试可…...
多线程-死锁
/*** 死锁demo*/ public class DeadlockDemo {public static void main(String[] args) {// 创建两个对象final Object resource1 "resource1";final Object resource2 "resource2";// 创建第一个线程Thread t1 new Thread(() -> {// 尝试锁定resour…...
P1006 [NOIP2008 提高组] 传纸条
P1006 [NOIP2008 提高组] 传纸条 题目描述输入格式输出格式样例 #1样例输入 #1样例输出 #1 提示 思路四维dp三维dp AC四维代码:AC三维代码: 题目描述 小渊和小轩是好朋友也是同班同学,他们在一起总有谈不完的话题。一次素质拓展活动中&#…...
杭电比赛总结
我们的队伍:team013 另外两队:team014、team015 今天是我第一次打杭电,发现杭电多数都是猜结论题 先给一下我们的提交数据 Submit TimeProblem IDTimeMemoryJudge Status4:59:59101115 MS1692 KWrong Answer4:59:55101115 MS1684 KWrong…...
dom靶场
靶场下载地址: https://www.vulnhub.com/entry/domdom-1,328/ 一、信息收集 获取主机ip nmap -sP 192.168.16.0/24netdiscover -r 192.168.16.0/24端口版本获取 nmap -sV -sC -A -p 1-65535 192.168.16.209开放端口只有80 目录扫描 这里扫描php后缀的文件 g…...
go struct 的常见问题
go struct 的常见问题 1. 什么是struct?2. 如何声明、定义和创建一个struct?3. struct和其他数据类型(如数组、切片、map等)有什么区别?4. 如何访问struct字段?5. struct是否支持继承,是否支持重…...
Linux系统下的性能分析命令
在 Linux 系统下,有许多用于性能分析和调试的命令和工具,可以帮助您识别系统瓶颈、优化性能以及调查问题。本文将介绍在性能分析过程中,可能使用到的一些命令。 以下是一些常用的性能分析命令和工具汇总: 命令功能简述top用于实…...
第十三课:QtCmd 命令行终端应用程序开发
功能描述:开发一个类似于 Windows 命令行提示符或 Linux 命令行终端的应用程序 一、最终演示效果 QtCmd 不是因为它是 Qt 的组件,而是采用 Qt 开发了一个类似 Windows 命令提示符或者 Linux 命令行终端的应用程序,故取名为 QtCmd。 上述演示…...
第19节 Node.js Express 框架
Express 是一个为Node.js设计的web开发框架,它基于nodejs平台。 Express 简介 Express是一个简洁而灵活的node.js Web应用框架, 提供了一系列强大特性帮助你创建各种Web应用,和丰富的HTTP工具。 使用Express可以快速地搭建一个完整功能的网站。 Expre…...
java_网络服务相关_gateway_nacos_feign区别联系
1. spring-cloud-starter-gateway 作用:作为微服务架构的网关,统一入口,处理所有外部请求。 核心能力: 路由转发(基于路径、服务名等)过滤器(鉴权、限流、日志、Header 处理)支持负…...
中南大学无人机智能体的全面评估!BEDI:用于评估无人机上具身智能体的综合性基准测试
作者:Mingning Guo, Mengwei Wu, Jiarun He, Shaoxian Li, Haifeng Li, Chao Tao单位:中南大学地球科学与信息物理学院论文标题:BEDI: A Comprehensive Benchmark for Evaluating Embodied Agents on UAVs论文链接:https://arxiv.…...
AI编程--插件对比分析:CodeRider、GitHub Copilot及其他
AI编程插件对比分析:CodeRider、GitHub Copilot及其他 随着人工智能技术的快速发展,AI编程插件已成为提升开发者生产力的重要工具。CodeRider和GitHub Copilot作为市场上的领先者,分别以其独特的特性和生态系统吸引了大量开发者。本文将从功…...
在鸿蒙HarmonyOS 5中使用DevEco Studio实现录音机应用
1. 项目配置与权限设置 1.1 配置module.json5 {"module": {"requestPermissions": [{"name": "ohos.permission.MICROPHONE","reason": "录音需要麦克风权限"},{"name": "ohos.permission.WRITE…...
[Java恶补day16] 238.除自身以外数组的乘积
给你一个整数数组 nums,返回 数组 answer ,其中 answer[i] 等于 nums 中除 nums[i] 之外其余各元素的乘积 。 题目数据 保证 数组 nums之中任意元素的全部前缀元素和后缀的乘积都在 32 位 整数范围内。 请 不要使用除法,且在 O(n) 时间复杂度…...
让回归模型不再被异常值“带跑偏“,MSE和Cauchy损失函数在噪声数据环境下的实战对比
在机器学习的回归分析中,损失函数的选择对模型性能具有决定性影响。均方误差(MSE)作为经典的损失函数,在处理干净数据时表现优异,但在面对包含异常值的噪声数据时,其对大误差的二次惩罚机制往往导致模型参数…...
《C++ 模板》
目录 函数模板 类模板 非类型模板参数 模板特化 函数模板特化 类模板的特化 模板,就像一个模具,里面可以将不同类型的材料做成一个形状,其分为函数模板和类模板。 函数模板 函数模板可以简化函数重载的代码。格式:templa…...
springboot整合VUE之在线教育管理系统简介
可以学习到的技能 学会常用技术栈的使用 独立开发项目 学会前端的开发流程 学会后端的开发流程 学会数据库的设计 学会前后端接口调用方式 学会多模块之间的关联 学会数据的处理 适用人群 在校学生,小白用户,想学习知识的 有点基础,想要通过项…...
使用Spring AI和MCP协议构建图片搜索服务
目录 使用Spring AI和MCP协议构建图片搜索服务 引言 技术栈概览 项目架构设计 架构图 服务端开发 1. 创建Spring Boot项目 2. 实现图片搜索工具 3. 配置传输模式 Stdio模式(本地调用) SSE模式(远程调用) 4. 注册工具提…...
