神经网络基础-神经网络补充概念-04-梯度下降法
概念
梯度下降法是一种常用的优化算法,用于在机器学习和深度学习中更新模型参数以最小化损失函数。它通过迭代地调整参数,沿着损失函数的负梯度方向移动,从而逐步逼近损失函数的最小值。
基本思想
梯度下降法的基本思想是:在每次迭代中,计算损失函数对于模型参数的梯度(导数),然后将参数朝着梯度的负方向移动一小步(称为学习率),以减少损失函数的值。这个过程将一直持续,直到达到收敛条件(如达到一定迭代次数或损失函数的变化不再显著)。
伪代码
1. 初始化模型参数(权重和偏置)
2. 设置学习率(步长)
3. 进入迭代循环:4. 计算损失函数关于参数的梯度5. 更新参数:参数 = 参数 - 学习率 * 梯度6. 检查收敛条件(例如,损失函数的变化小于某个阈值或达到最大迭代次数)
7. 返回最终的模型参数
代码实现
import numpy as np# 准备示例数据
X = ... # 特征矩阵
y = ... # 标签向量# 初始化模型参数
theta = np.zeros(X.shape[1])# 设置学习率和迭代次数
learning_rate = 0.01
num_iterations = 1000# 梯度下降迭代
for _ in range(num_iterations):# 计算梯度gradient = np.dot(X.T, (y - sigmoid(np.dot(X, theta))))# 更新参数theta += learning_rate * gradient# 定义sigmoid函数
def sigmoid(z):return 1 / (1 + np.exp(-z))# 训练完成后,theta 包含了最优的模型参数相关文章:
神经网络基础-神经网络补充概念-04-梯度下降法
概念 梯度下降法是一种常用的优化算法,用于在机器学习和深度学习中更新模型参数以最小化损失函数。它通过迭代地调整参数,沿着损失函数的负梯度方向移动,从而逐步逼近损失函数的最小值。 基本思想 梯度下降法的基本思想是:在每…...
神经网络基础-神经网络补充概念-45-指数加权平均
概念 指数加权平均(Exponential Moving Average,EMA)是一种平均方法,用于平滑时间序列数据或者计算变量的滚动均值。它对数据的权重分布呈指数递减,越靠近当前时刻的数据权重越高,越远离当前时刻的数据权重…...
模型预测笔记(一):数据清洗及可视化、模型搭建、模型训练和预测代码一体化和对应结果展示(可作为baseline)
模型预测 一、导入关键包二、如何载入、分析和保存文件三、修改缺失值3.1 众数3.2 平均值3.3 中位数3.4 0填充 四、修改异常值4.1 删除4.2 替换 五、数据绘图分析5.1 饼状图5.1.1 绘制某一特征的数值情况(二分类) 5.2 柱状图5.2.1 单特征与目标特征之间的…...
【Pytroch】基于K邻近算法的数据分类预测(Excel可直接替换数据)
【Pytroch】基于K邻近算法的数据分类预测(Excel可直接替换数据) 1.模型原理2.数学公式3.文件结构4.Excel数据5.下载地址6.完整代码7.运行结果1.模型原理 K最近邻(K-Nearest Neighbors,简称KNN)是一种简单但常用的机器学习算法,用于分类和回归问题。它的核心思想是基于已…...
Centos 7 通过Docker 安装MySQL 8.0.33实现数据持久化及my.cnf配置
要在 CentOS 7 上使用 Docker 启动 MySQL 8.0.33,并配置 MySQL 的 my.cnf 文件,同时实现 MySQL 数据的持久化,可以按照以下步骤进行操作: 1、安装 Docker:确保你在 CentOS 7 上已经安装了 Docker。如果尚未安装&#…...
自夹持P型屏蔽型碳化硅沟槽型绝缘栅双极晶体管,用于低开通电压和开关损耗
目录 标题:Self-Clamped P-shield SiC Trench IGBT for Low On-State Voltage and Switching LossProceedings of the 35st International Symposium on Power Semiconductor Devices & ICs摘要信息解释研究了什么文章的创新点文章的研究方法文章的结论 标题&am…...
【数据结构与算法——TypeScript】树结构Tree
【数据结构与算法——TypeScript】 树结构(Tree) 认识树结构以及特性 什么是树? 🌲 真实的树:相信每个人对现实生活中的树都会非常熟悉 🌲 我们来看一下树有什么特点? ▫️ 树通常有一个根。连接着根的是树干。 ▫️ 树干到…...
多维时序 | MATLAB实现PSO-CNN-BiGRU多变量时间序列预测
多维时序 | MATLAB实现PSO-CNN-BiGRU多变量时间序列预测 目录 多维时序 | MATLAB实现PSO-CNN-BiGRU多变量时间序列预测预测效果基本介绍模型描述程序设计参考资料 预测效果 基本介绍 1.多维时序 | MATLAB实现PSO-CNN-BiGRU多变量时间序列预测; 2.运行环境为Matlab20…...
Shell 编程基础01
0:目录 1.创建新的虚拟机项目 2.linux常见命令和配置时间同步器 3.文件属性 4.if for while和方法 1.创建新的虚拟机项目 默认下一步到虚拟机命名 默认下一步设置磁盘大小 自定义硬件 删除打印机设置映像地址 启动虚拟机 选择 install centOS 7 选择英文 设置时…...
Cross-Site Scripting
文章目录 反射型xss(get)反射型xss(post)存储型xssDOM型xssDOM型xss-xxss-盲打xss-过滤xss之htmlspecialcharsxss之href输出xss之js输出 反射型xss(get) <script>alert("123")</script>修改maxlength的值 反射型xss(post) 账号admin密码123456直接登录 …...
基于java企业员工绩效考评系统设计与实现
摘 要 时代的变化速度实在超出人类的所料,21世纪,计算机已经发展到各行各业,各个地区,它的载体媒介-计算机,大众称之为的电脑,是一种特高速的科学仪器,比人类的脑袋要灵光无数倍,什么…...
SpringBoot 操作Redis、创建Redis文件夹、遍历Redis文件夹
文章目录 前言依赖连接 RedisRedis 配置文件Redis 工具类操作 Redis创建 Redis 文件夹查询数据遍历 Redis 文件夹 前言 Redis 是一种高性能的键值存储数据库,支持网络、可基于内存亦可持久化的日志型,而 Spring Boot 是一个简化了开发过程的 Java 框架。…...
c++11 标准模板(STL)(std::basic_stringbuf)(六)
定义于头文件 <sstream> template< class CharT, class Traits std::char_traits<CharT>, class Allocator std::allocator<CharT> > class basic_stringbuf : public std::basic_streambuf<CharT, Traits> std::basic_stringbu…...
iceberg系列之 hadoop catalog 小文件合并实战
背景 flink1.15 hadoop3.0pom文件 <?xml version"1.0" encoding"UTF-8"?> <project xmlns"http://maven.apache.org/POM/4.0.0"xmlns:xsi"http://www.w3.org/2001/XMLSchema-instance"xsi:schemaLocation"http://mave…...
神经网络基础-神经网络补充概念-25-深层神经网络
简介 深层神经网络(Deep Neural Network,DNN)是一种具有多个隐藏层的神经网络,它可以用来解决复杂的模式识别和特征学习任务。深层神经网络在近年来的机器学习和人工智能领域中取得了重大突破,如图像识别、自然语言处…...
MySQL— 基础语法大全及操作演示!!!(上)
MySQL—— 基础语法大全及操作演示(上) 一、MySQL概述1.1 、数据库相关概念1.1.1 MySQL启动和停止 1.2 、MySQL 客户端连接1.3 、数据模型 二、SQL2.1、SQL通用语法2.2、SQL分类2.3、DDL2.3.1 DDL — 数据库操作2.3.1 DDL — 表操作 2.4、DML2.4.1 DML—…...
[golang gin框架] 46.Gin商城项目-微服务实战之后台Rbac客户端调用微服务权限验证以及Rbac微服务数据库抽离
一. 根据用户的权限动态显示左侧菜单微服务 1.引入 后台Rbac客户端调用微服务权限验证功能主要是: 登录后显示用户名称、根据用户的权限动态显示左侧菜单,判断当前登录用户的权限 、没有权限访问则拒绝,参考[golang gin框架] 14.Gin 商城项目-RBAC管理,该微服务功能和上一节[g…...
域名和ip的关系
域名和ip的关系 一:什么是域名 域名,简称域名、网域,是由一串用点分隔的名字组成的上某一台计算机或计算机组的名称,用于在数据传输时标识 计算机的电子方位(有时也指地理位置)。网域名称系统,有时也简称为域名…...
excel日期函数篇1
1、DAY(serial_number):返回序列数表示的某月的天数 在括号内给出一个时间对象或引用一个时间对象(年月日),返回多少日 下面结果都为20 2、MONTH(serial_number):返回序列数表示的某年的月份 在括号内给出一个时间对…...
Leetcode151 翻转字符串中的单词
给你一个字符串 s ,请你反转字符串中 单词 的顺序。 单词 是由非空格字符组成的字符串。s 中使用至少一个空格将字符串中的 单词 分隔开。 返回 单词 顺序颠倒且 单词 之间用单个空格连接的结果字符串。 注意:输入字符串 s中可能会存在前导空格、尾随空格…...
业务系统对接大模型的基础方案:架构设计与关键步骤
业务系统对接大模型:架构设计与关键步骤 在当今数字化转型的浪潮中,大语言模型(LLM)已成为企业提升业务效率和创新能力的关键技术之一。将大模型集成到业务系统中,不仅可以优化用户体验,还能为业务决策提供…...
Ubuntu系统下交叉编译openssl
一、参考资料 OpenSSL&&libcurl库的交叉编译 - hesetone - 博客园 二、准备工作 1. 编译环境 宿主机:Ubuntu 20.04.6 LTSHost:ARM32位交叉编译器:arm-linux-gnueabihf-gcc-11.1.0 2. 设置交叉编译工具链 在交叉编译之前&#x…...
vscode(仍待补充)
写于2025 6.9 主包将加入vscode这个更权威的圈子 vscode的基本使用 侧边栏 vscode还能连接ssh? debug时使用的launch文件 1.task.json {"tasks": [{"type": "cppbuild","label": "C/C: gcc.exe 生成活动文件"…...
Linux简单的操作
ls ls 查看当前目录 ll 查看详细内容 ls -a 查看所有的内容 ls --help 查看方法文档 pwd pwd 查看当前路径 cd cd 转路径 cd .. 转上一级路径 cd 名 转换路径 …...
linux 错误码总结
1,错误码的概念与作用 在Linux系统中,错误码是系统调用或库函数在执行失败时返回的特定数值,用于指示具体的错误类型。这些错误码通过全局变量errno来存储和传递,errno由操作系统维护,保存最近一次发生的错误信息。值得注意的是,errno的值在每次系统调用或函数调用失败时…...
【Go】3、Go语言进阶与依赖管理
前言 本系列文章参考自稀土掘金上的 【字节内部课】公开课,做自我学习总结整理。 Go语言并发编程 Go语言原生支持并发编程,它的核心机制是 Goroutine 协程、Channel 通道,并基于CSP(Communicating Sequential Processes࿰…...
06 Deep learning神经网络编程基础 激活函数 --吴恩达
深度学习激活函数详解 一、核心作用 引入非线性:使神经网络可学习复杂模式控制输出范围:如Sigmoid将输出限制在(0,1)梯度传递:影响反向传播的稳定性二、常见类型及数学表达 Sigmoid σ ( x ) = 1 1 +...
根据万维钢·精英日课6的内容,使用AI(2025)可以参考以下方法:
根据万维钢精英日课6的内容,使用AI(2025)可以参考以下方法: 四个洞见 模型已经比人聪明:以ChatGPT o3为代表的AI非常强大,能运用高级理论解释道理、引用最新学术论文,生成对顶尖科学家都有用的…...
视频行为标注工具BehaviLabel(源码+使用介绍+Windows.Exe版本)
前言: 最近在做行为检测相关的模型,用的是时空图卷积网络(STGCN),但原有kinetic-400数据集数据质量较低,需要进行细粒度的标注,同时粗略搜了下已有开源工具基本都集中于图像分割这块,…...
人机融合智能 | “人智交互”跨学科新领域
本文系统地提出基于“以人为中心AI(HCAI)”理念的人-人工智能交互(人智交互)这一跨学科新领域及框架,定义人智交互领域的理念、基本理论和关键问题、方法、开发流程和参与团队等,阐述提出人智交互新领域的意义。然后,提出人智交互研究的三种新范式取向以及它们的意义。最后,总结…...
