当前位置: 首页 > news >正文

神经网络基础-神经网络补充概念-04-梯度下降法

概念

梯度下降法是一种常用的优化算法,用于在机器学习和深度学习中更新模型参数以最小化损失函数。它通过迭代地调整参数,沿着损失函数的负梯度方向移动,从而逐步逼近损失函数的最小值。

基本思想

梯度下降法的基本思想是:在每次迭代中,计算损失函数对于模型参数的梯度(导数),然后将参数朝着梯度的负方向移动一小步(称为学习率),以减少损失函数的值。这个过程将一直持续,直到达到收敛条件(如达到一定迭代次数或损失函数的变化不再显著)。

伪代码

1. 初始化模型参数(权重和偏置)
2. 设置学习率(步长)
3. 进入迭代循环:4. 计算损失函数关于参数的梯度5. 更新参数:参数 = 参数 - 学习率 * 梯度6. 检查收敛条件(例如,损失函数的变化小于某个阈值或达到最大迭代次数)
7. 返回最终的模型参数

代码实现

import numpy as np# 准备示例数据
X = ...  # 特征矩阵
y = ...  # 标签向量# 初始化模型参数
theta = np.zeros(X.shape[1])# 设置学习率和迭代次数
learning_rate = 0.01
num_iterations = 1000# 梯度下降迭代
for _ in range(num_iterations):# 计算梯度gradient = np.dot(X.T, (y - sigmoid(np.dot(X, theta))))# 更新参数theta += learning_rate * gradient# 定义sigmoid函数
def sigmoid(z):return 1 / (1 + np.exp(-z))# 训练完成后,theta 包含了最优的模型参数

相关文章:

神经网络基础-神经网络补充概念-04-梯度下降法

概念 梯度下降法是一种常用的优化算法,用于在机器学习和深度学习中更新模型参数以最小化损失函数。它通过迭代地调整参数,沿着损失函数的负梯度方向移动,从而逐步逼近损失函数的最小值。 基本思想 梯度下降法的基本思想是:在每…...

神经网络基础-神经网络补充概念-45-指数加权平均

概念 指数加权平均(Exponential Moving Average,EMA)是一种平均方法,用于平滑时间序列数据或者计算变量的滚动均值。它对数据的权重分布呈指数递减,越靠近当前时刻的数据权重越高,越远离当前时刻的数据权重…...

模型预测笔记(一):数据清洗及可视化、模型搭建、模型训练和预测代码一体化和对应结果展示(可作为baseline)

模型预测 一、导入关键包二、如何载入、分析和保存文件三、修改缺失值3.1 众数3.2 平均值3.3 中位数3.4 0填充 四、修改异常值4.1 删除4.2 替换 五、数据绘图分析5.1 饼状图5.1.1 绘制某一特征的数值情况(二分类) 5.2 柱状图5.2.1 单特征与目标特征之间的…...

【Pytroch】基于K邻近算法的数据分类预测(Excel可直接替换数据)

【Pytroch】基于K邻近算法的数据分类预测(Excel可直接替换数据) 1.模型原理2.数学公式3.文件结构4.Excel数据5.下载地址6.完整代码7.运行结果1.模型原理 K最近邻(K-Nearest Neighbors,简称KNN)是一种简单但常用的机器学习算法,用于分类和回归问题。它的核心思想是基于已…...

Centos 7 通过Docker 安装MySQL 8.0.33实现数据持久化及my.cnf配置

要在 CentOS 7 上使用 Docker 启动 MySQL 8.0.33,并配置 MySQL 的 my.cnf 文件,同时实现 MySQL 数据的持久化,可以按照以下步骤进行操作: 1、安装 Docker:确保你在 CentOS 7 上已经安装了 Docker。如果尚未安装&#…...

自夹持P型屏蔽型碳化硅沟槽型绝缘栅双极晶体管,用于低开通电压和开关损耗

目录 标题:Self-Clamped P-shield SiC Trench IGBT for Low On-State Voltage and Switching LossProceedings of the 35st International Symposium on Power Semiconductor Devices & ICs摘要信息解释研究了什么文章的创新点文章的研究方法文章的结论 标题&am…...

【数据结构与算法——TypeScript】树结构Tree

【数据结构与算法——TypeScript】 树结构(Tree) 认识树结构以及特性 什么是树? 🌲 真实的树:相信每个人对现实生活中的树都会非常熟悉 🌲 我们来看一下树有什么特点? ▫️ 树通常有一个根。连接着根的是树干。 ▫️ 树干到…...

多维时序 | MATLAB实现PSO-CNN-BiGRU多变量时间序列预测

多维时序 | MATLAB实现PSO-CNN-BiGRU多变量时间序列预测 目录 多维时序 | MATLAB实现PSO-CNN-BiGRU多变量时间序列预测预测效果基本介绍模型描述程序设计参考资料 预测效果 基本介绍 1.多维时序 | MATLAB实现PSO-CNN-BiGRU多变量时间序列预测; 2.运行环境为Matlab20…...

Shell 编程基础01

0:目录 1.创建新的虚拟机项目 2.linux常见命令和配置时间同步器 3.文件属性 4.if for while和方法 1.创建新的虚拟机项目 默认下一步到虚拟机命名 默认下一步设置磁盘大小 自定义硬件 删除打印机设置映像地址 启动虚拟机 选择 install centOS 7 选择英文 设置时…...

Cross-Site Scripting

文章目录 反射型xss(get)反射型xss(post)存储型xssDOM型xssDOM型xss-xxss-盲打xss-过滤xss之htmlspecialcharsxss之href输出xss之js输出 反射型xss(get) <script>alert("123")</script>修改maxlength的值 反射型xss(post) 账号admin密码123456直接登录 …...

基于java企业员工绩效考评系统设计与实现

摘 要 时代的变化速度实在超出人类的所料&#xff0c;21世纪&#xff0c;计算机已经发展到各行各业&#xff0c;各个地区&#xff0c;它的载体媒介-计算机&#xff0c;大众称之为的电脑&#xff0c;是一种特高速的科学仪器&#xff0c;比人类的脑袋要灵光无数倍&#xff0c;什么…...

SpringBoot 操作Redis、创建Redis文件夹、遍历Redis文件夹

文章目录 前言依赖连接 RedisRedis 配置文件Redis 工具类操作 Redis创建 Redis 文件夹查询数据遍历 Redis 文件夹 前言 Redis 是一种高性能的键值存储数据库&#xff0c;支持网络、可基于内存亦可持久化的日志型&#xff0c;而 Spring Boot 是一个简化了开发过程的 Java 框架。…...

c++11 标准模板(STL)(std::basic_stringbuf)(六)

定义于头文件 <sstream> template< class CharT, class Traits std::char_traits<CharT>, class Allocator std::allocator<CharT> > class basic_stringbuf : public std::basic_streambuf<CharT, Traits> std::basic_stringbu…...

iceberg系列之 hadoop catalog 小文件合并实战

背景 flink1.15 hadoop3.0pom文件 <?xml version"1.0" encoding"UTF-8"?> <project xmlns"http://maven.apache.org/POM/4.0.0"xmlns:xsi"http://www.w3.org/2001/XMLSchema-instance"xsi:schemaLocation"http://mave…...

神经网络基础-神经网络补充概念-25-深层神经网络

简介 深层神经网络&#xff08;Deep Neural Network&#xff0c;DNN&#xff09;是一种具有多个隐藏层的神经网络&#xff0c;它可以用来解决复杂的模式识别和特征学习任务。深层神经网络在近年来的机器学习和人工智能领域中取得了重大突破&#xff0c;如图像识别、自然语言处…...

MySQL— 基础语法大全及操作演示!!!(上)

MySQL—— 基础语法大全及操作演示&#xff08;上&#xff09; 一、MySQL概述1.1 、数据库相关概念1.1.1 MySQL启动和停止 1.2 、MySQL 客户端连接1.3 、数据模型 二、SQL2.1、SQL通用语法2.2、SQL分类2.3、DDL2.3.1 DDL — 数据库操作2.3.1 DDL — 表操作 2.4、DML2.4.1 DML—…...

[golang gin框架] 46.Gin商城项目-微服务实战之后台Rbac客户端调用微服务权限验证以及Rbac微服务数据库抽离

一. 根据用户的权限动态显示左侧菜单微服务 1.引入 后台Rbac客户端调用微服务权限验证功能主要是: 登录后显示用户名称、根据用户的权限动态显示左侧菜单,判断当前登录用户的权限 、没有权限访问则拒绝,参考[golang gin框架] 14.Gin 商城项目-RBAC管理,该微服务功能和上一节[g…...

域名和ip的关系

域名和ip的关系 一&#xff1a;什么是域名 域名&#xff0c;简称域名、网域&#xff0c;是由一串用点分隔的名字组成的上某一台计算机或计算机组的名称&#xff0c;用于在数据传输时标识 计算机的电子方位(有时也指地理位置)。网域名称系统&#xff0c;有时也简称为域名…...

excel日期函数篇1

1、DAY(serial_number)&#xff1a;返回序列数表示的某月的天数 在括号内给出一个时间对象或引用一个时间对象&#xff08;年月日&#xff09;&#xff0c;返回多少日 下面结果都为20 2、MONTH(serial_number)&#xff1a;返回序列数表示的某年的月份 在括号内给出一个时间对…...

Leetcode151 翻转字符串中的单词

给你一个字符串 s &#xff0c;请你反转字符串中 单词 的顺序。 单词 是由非空格字符组成的字符串。s 中使用至少一个空格将字符串中的 单词 分隔开。 返回 单词 顺序颠倒且 单词 之间用单个空格连接的结果字符串。 注意&#xff1a;输入字符串 s中可能会存在前导空格、尾随空格…...

椭圆曲线密码学(ECC)

一、ECC算法概述 椭圆曲线密码学&#xff08;Elliptic Curve Cryptography&#xff09;是基于椭圆曲线数学理论的公钥密码系统&#xff0c;由Neal Koblitz和Victor Miller在1985年独立提出。相比RSA&#xff0c;ECC在相同安全强度下密钥更短&#xff08;256位ECC ≈ 3072位RSA…...

React Native 开发环境搭建(全平台详解)

React Native 开发环境搭建&#xff08;全平台详解&#xff09; 在开始使用 React Native 开发移动应用之前&#xff0c;正确设置开发环境是至关重要的一步。本文将为你提供一份全面的指南&#xff0c;涵盖 macOS 和 Windows 平台的配置步骤&#xff0c;如何在 Android 和 iOS…...

IGP(Interior Gateway Protocol,内部网关协议)

IGP&#xff08;Interior Gateway Protocol&#xff0c;内部网关协议&#xff09; 是一种用于在一个自治系统&#xff08;AS&#xff09;内部传递路由信息的路由协议&#xff0c;主要用于在一个组织或机构的内部网络中决定数据包的最佳路径。与用于自治系统之间通信的 EGP&…...

c++ 面试题(1)-----深度优先搜索(DFS)实现

操作系统&#xff1a;ubuntu22.04 IDE:Visual Studio Code 编程语言&#xff1a;C11 题目描述 地上有一个 m 行 n 列的方格&#xff0c;从坐标 [0,0] 起始。一个机器人可以从某一格移动到上下左右四个格子&#xff0c;但不能进入行坐标和列坐标的数位之和大于 k 的格子。 例…...

linux arm系统烧录

1、打开瑞芯微程序 2、按住linux arm 的 recover按键 插入电源 3、当瑞芯微检测到有设备 4、松开recover按键 5、选择升级固件 6、点击固件选择本地刷机的linux arm 镜像 7、点击升级 &#xff08;忘了有没有这步了 估计有&#xff09; 刷机程序 和 镜像 就不提供了。要刷的时…...

Java多线程实现之Callable接口深度解析

Java多线程实现之Callable接口深度解析 一、Callable接口概述1.1 接口定义1.2 与Runnable接口的对比1.3 Future接口与FutureTask类 二、Callable接口的基本使用方法2.1 传统方式实现Callable接口2.2 使用Lambda表达式简化Callable实现2.3 使用FutureTask类执行Callable任务 三、…...

Spring Boot面试题精选汇总

&#x1f91f;致敬读者 &#x1f7e9;感谢阅读&#x1f7e6;笑口常开&#x1f7ea;生日快乐⬛早点睡觉 &#x1f4d8;博主相关 &#x1f7e7;博主信息&#x1f7e8;博客首页&#x1f7eb;专栏推荐&#x1f7e5;活动信息 文章目录 Spring Boot面试题精选汇总⚙️ **一、核心概…...

ElasticSearch搜索引擎之倒排索引及其底层算法

文章目录 一、搜索引擎1、什么是搜索引擎?2、搜索引擎的分类3、常用的搜索引擎4、搜索引擎的特点二、倒排索引1、简介2、为什么倒排索引不用B+树1.创建时间长,文件大。2.其次,树深,IO次数可怕。3.索引可能会失效。4.精准度差。三. 倒排索引四、算法1、Term Index的算法2、 …...

Caliper 配置文件解析:config.yaml

Caliper 是一个区块链性能基准测试工具,用于评估不同区块链平台的性能。下面我将详细解释你提供的 fisco-bcos.json 文件结构,并说明它与 config.yaml 文件的关系。 fisco-bcos.json 文件解析 这个文件是针对 FISCO-BCOS 区块链网络的 Caliper 配置文件,主要包含以下几个部…...

Java面试专项一-准备篇

一、企业简历筛选规则 一般企业的简历筛选流程&#xff1a;首先由HR先筛选一部分简历后&#xff0c;在将简历给到对应的项目负责人后再进行下一步的操作。 HR如何筛选简历 例如&#xff1a;Boss直聘&#xff08;招聘方平台&#xff09; 直接按照条件进行筛选 例如&#xff1a…...