当前位置: 首页 > news >正文

神经网络基础-神经网络补充概念-49-adam优化算法

概念

Adam(Adaptive Moment Estimation)是一种优化算法,结合了动量梯度下降法和RMSProp的优点,用于在训练神经网络等深度学习模型时自适应地调整学习率。Adam算法在深度学习中广泛应用,通常能够加速收敛并提高模型性能。

Adam算法综合了动量(momentum)和均方梯度的移动平均(RMSProp)来更新模型参数。与传统的梯度下降法不同,Adam维护了一个每个参数的动量变量和均方梯度的移动平均变量,并在每个迭代步骤中使用这些变量来调整学习率。

步骤

1初始化参数:初始化模型的参数。

2初始化动量变量和均方梯度的移动平均:初始化动量变量为零向量,初始化均方梯度的移动平均为零向量。

3计算梯度:计算当前位置的梯度。

4更新动量变量:计算动量变量的移动平均。

momentum = beta1 * momentum + (1 - beta1) * gradient

其中,beta1 是用于计算动量变量移动平均的超参数。
5更新均方梯度的移动平均:计算均方梯度的移动平均。

moving_average = beta2 * moving_average + (1 - beta2) * gradient^2

其中,beta2 是用于计算均方梯度的移动平均的超参数
6修正偏差
对动量变量和均方梯度的移动平均进行偏差修正,以减轻初始迭代的影响。

corrected_momentum = momentum / (1 - beta1^t)
corrected_moving_average = moving_average / (1 - beta2^t)

7更新参数

parameter = parameter - learning_rate * corrected_momentum / (sqrt(corrected_moving_average) + epsilon)

其中,epsilon 是一个小的常数,防止分母为零。

8重复迭代:重复执行步骤 3 到 7,直到达到预定的迭代次数(epochs)或收敛条件。

代码实现

import numpy as np
import matplotlib.pyplot as plt# 生成随机数据
np.random.seed(0)
X = 2 * np.random.rand(100, 1)
y = 4 + 3 * X + np.random.randn(100, 1)# 添加偏置项
X_b = np.c_[np.ones((100, 1)), X]# 初始化参数
theta = np.random.randn(2, 1)# 学习率
learning_rate = 0.1# Adam参数
beta1 = 0.9
beta2 = 0.999
epsilon = 1e-8
momentum = np.zeros_like(theta)
moving_average = np.zeros_like(theta)# 迭代次数
n_iterations = 1000# Adam优化
for iteration in range(n_iterations):gradients = 2 / 100 * X_b.T.dot(X_b.dot(theta) - y)momentum = beta1 * momentum + (1 - beta1) * gradientsmoving_average = beta2 * moving_average + (1 - beta2) * gradients**2corrected_momentum = momentum / (1 - beta1**(iteration+1))corrected_moving_average = moving_average / (1 - beta2**(iteration+1))theta = theta - learning_rate * corrected_momentum / (np.sqrt(corrected_moving_average) + epsilon)# 绘制数据和拟合直线
plt.scatter(X, y)
plt.plot(X, X_b.dot(theta), color='red')
plt.xlabel('X')
plt.ylabel('y')
plt.title('Linear Regression

相关文章:

神经网络基础-神经网络补充概念-49-adam优化算法

概念 Adam(Adaptive Moment Estimation)是一种优化算法,结合了动量梯度下降法和RMSProp的优点,用于在训练神经网络等深度学习模型时自适应地调整学习率。Adam算法在深度学习中广泛应用,通常能够加速收敛并提高模型性能…...

Java:正则表达式书写规则及相关案例:检验QQ号码,校验手机号码,邮箱格式,当前时间

正则表达式 目标:体验一下使用正则表达式来校验数据格式的合法性。需求:校验QQ号码是否正确,要求全部是数字,长度是(6-20)之间,不能以0开头 首先用自己编写的程序判断QQ号码是否正确 public static void main(String[] args) {Sy…...

图数据库_Neo4j_Centos7.9安装Neo4j社区版3.5.4_基于jdk1.8---Neo4j图数据库工作笔记0011

首先上传安装包,到opt/soft目录 然后看一下jdk安装的是什么版本的,因为在neo4j 4以后就必须要用jdk11 以上的版本,我这里还用着jdk1.8 所以 我这里用3.5.4的版本 关于下载地址: https://dist.neo4j.org/neo4j-community-3.5.4-unix.tar.gz 然后再去解压到/opt/module目录下 …...

使用Rust编写的一款使用遗传算法、神经网络、WASM技术的模拟生物进化的程序

模拟生物进化程序 Github地址:FishLife 期待各位的star✨✨✨ 本项目是一个模拟生物进化的程序,利用遗传算法、神经网络技术对鱼的眼睛和大脑进行模拟。该项目是使用 Rust 语言编写的,并编译为 WebAssembly (Wasm) 格式,使其可以…...

UE4/UE5 “无法双击打开.uproject 点击无反应“解决

一、方法一:运行UnrealVersionSelector.exe 1.找到Epic Game Lancher的安装目录, 在lancher->Engine->Binaries->Win64->UnrealVersionSelector.exe 2.把UnrealVersionSelector.exe 分别拷贝到UE4 不同版本引擎的 Engine->Binaries->…...

【前端】深入理解CSS定位

目录 一、前言二、定位组成1、定位模式1.1、静态定位static①、语法定义②、特点 1.2、相对定位relative①、语法定义②、特点③、代码示例 1.3、绝对定位absolute①、语法定义②、特点③、代码示例1)、没有祖先元素或者祖先元素没有定位2)、祖先元素有定…...

【问题】分布式事务的场景下如何保证读写分离的数据一致性

我的理解这个题目可以获得以下关键字:分布式处理、读写分离、数据一致性 那么就从”读写分离“做切入口吧,按我的理解其实就是在保证数据一致性的前提下两个(或以上)的数据库分别肩负不同的数据处理任务。太过久远的就不说了&…...

常见的Web安全漏洞有哪些,Web安全漏洞常用测试方法介绍

Web安全漏洞是指在Web应用程序中存在的可能被攻击者利用的漏洞,正确认识和了解这些漏洞对于Web应用程序的开发和测试至关重要。 一、常见的Web安全漏洞类型: 1、跨站脚本攻击(Cross-Site Scripting,XSS):攻击者通过向Web页面注入…...

随机微分方程

应用随机过程|第7章 随机微分方程 见知乎:https://zhuanlan.zhihu.com/p/348366892?utm_sourceqq&utm_mediumsocial&utm_oi1315073218793488384...

下载安装并使用小乌龟TortoiseGit

1、下载TortoiseGit安装包 官网:Download – TortoiseGit – Windows Shell Interface to Githttps://tortoisegit.org/download/ 2、小乌龟汉化包 在官网的下面就有官方提供的下载包 3、安装...

npm ERR!Cannot read properties of null(reading ‘pickAlgorithm’)报错问题解决

当在使用npm包管理器或执行npm命令时,有时候会遇到“npm ERR!Cannot read properties of null(reading ‘pickAlgorithm’)”这个错误提示,这是一个常见的npm错误。 这个错误提示通常说明在使用npm包管理器时,执行了某个npm命令,…...

web前端tips:js继承——组合继承

上篇文章给大家分享了 js继承中的借用构造函数继承 web前端tips:js继承——借用构造函数继承 在借用构造函数继承中,我提到了它的缺点 无法继承父类原型链上的方法和属性,只能继承父类构造函数中的属性和方法 父类的方法无法复用&#xff0…...

(7)(7.3) 自动任务中的相机控制

文章目录 前言 7.3.1 概述 7.3.2 自动任务类型 7.3.3 创建合成图像 前言 本文介绍 ArduPilot 的相机和云台命令,并说明如何在 Mission Planner 中使用这些命令来定义相机勘测任务。这些说明假定已经连接并配置了相机触发器和云台(camera trigger and gimbal hav…...

Python 爬虫小练

Python 爬虫小练 获取贝壳网数据 使用到的模块 标准库 Python3 标准库列表 os 模块:os 模块提供了许多与操作系统交互的函数,例如创建、移动和删除文件和目录,以及访问环境变量等。math 模块:math 模块提供了数学函数&#xf…...

vue3 事件处理 @click

在Vue 3中&#xff0c;事件处理可以通过click指令来实现。click指令用于监听元素的点击事件&#xff0c;并在触发时执行相应的处理函数。 下面是一个简单的示例&#xff0c;展示了如何在Vue 3中处理点击事件&#xff1a; <template><button click"handleClick&…...

【第三阶段】kotlin语言使用replace完成加解密操作

fun main() {val password"ASDAFWEFWVWGEGSDFWEFEWGFS"println("原始密码&#xff1a;$password")//加密操作,就是把字符替换成数字&#xff0c;打乱加密var newPsdpassword.replace(Regex("[ADWF]")){when(it.value){//it.value 这里的每一个字…...

springBoot是如何实现自动装配的

目录 1 什么是自动装配 2 Spring自动装配原理 2.1 SpringBootConfiguration ​编辑 2.2 EnableAutoConfiguration 2.2.1 AutoConfigurationPackage 2.2.2 Import({AutoConfigurationImportSelector.class}) 2.3 ComponentScan 1 什么是自动装配 自动装配就是将官方写好的的…...

基于python+MobileNetV2算法模型实现一个图像识别分类系统

一、目录 算法模型介绍模型使用训练模型评估项目扩展 二、算法模型介绍 图像识别是计算机视觉领域的重要研究方向&#xff0c;它在人脸识别、物体检测、图像分类等领域有着广泛的应用。随着移动设备的普及和计算资源的限制&#xff0c;设计高效的图像识别算法变得尤为重要。…...

管理类联考——逻辑——真题篇——按知识分类——汇总篇——二、论证逻辑——归纳评价——归纳谬误

文章目录 第一节 归纳谬误题-归纳评价-归纳谬误题-归纳评论-归纳谬误-比率→数量,从基数找问题真题(2019-39)-归纳评论-归纳谬误-先归纳题干错误-诉诸人身分成:①诉诸权威:某人在某方面很权威,他做什么都是对的。②人身攻击:因为过往履历有问题,所以做什么都是错的。③…...

C++适配器模式

1 简介&#xff1a; 适配器模式是一种结构型设计模式&#xff0c;用于将一个类的接口转换为客户端所期望的另一个接口。适配器模式允许不兼容的类能够协同工作&#xff0c;通过适配器类来实现接口的转换和适配。 2 实现步骤&#xff1a; 以下是使用C实现适配器模式的步骤&…...

智能仓储的未来:自动化、AI与数据分析如何重塑物流中心

当仓库学会“思考”&#xff0c;物流的终极形态正在诞生 想象这样的场景&#xff1a; 凌晨3点&#xff0c;某物流中心灯火通明却空无一人。AGV机器人集群根据实时订单动态规划路径&#xff1b;AI视觉系统在0.1秒内扫描包裹信息&#xff1b;数字孪生平台正模拟次日峰值流量压力…...

Linux 内存管理实战精讲:核心原理与面试常考点全解析

Linux 内存管理实战精讲&#xff1a;核心原理与面试常考点全解析 Linux 内核内存管理是系统设计中最复杂但也最核心的模块之一。它不仅支撑着虚拟内存机制、物理内存分配、进程隔离与资源复用&#xff0c;还直接决定系统运行的性能与稳定性。无论你是嵌入式开发者、内核调试工…...

Selenium常用函数介绍

目录 一&#xff0c;元素定位 1.1 cssSeector 1.2 xpath 二&#xff0c;操作测试对象 三&#xff0c;窗口 3.1 案例 3.2 窗口切换 3.3 窗口大小 3.4 屏幕截图 3.5 关闭窗口 四&#xff0c;弹窗 五&#xff0c;等待 六&#xff0c;导航 七&#xff0c;文件上传 …...

BLEU评分:机器翻译质量评估的黄金标准

BLEU评分&#xff1a;机器翻译质量评估的黄金标准 1. 引言 在自然语言处理(NLP)领域&#xff0c;衡量一个机器翻译模型的性能至关重要。BLEU (Bilingual Evaluation Understudy) 作为一种自动化评估指标&#xff0c;自2002年由IBM的Kishore Papineni等人提出以来&#xff0c;…...

实战三:开发网页端界面完成黑白视频转为彩色视频

​一、需求描述 设计一个简单的视频上色应用&#xff0c;用户可以通过网页界面上传黑白视频&#xff0c;系统会自动将其转换为彩色视频。整个过程对用户来说非常简单直观&#xff0c;不需要了解技术细节。 效果图 ​二、实现思路 总体思路&#xff1a; 用户通过Gradio界面上…...

如何配置一个sql server使得其它用户可以通过excel odbc获取数据

要让其他用户通过 Excel 使用 ODBC 连接到 SQL Server 获取数据&#xff0c;你需要完成以下配置步骤&#xff1a; ✅ 一、在 SQL Server 端配置&#xff08;服务器设置&#xff09; 1. 启用 TCP/IP 协议 打开 “SQL Server 配置管理器”。导航到&#xff1a;SQL Server 网络配…...

6️⃣Go 语言中的哈希、加密与序列化:通往区块链世界的钥匙

Go 语言中的哈希、加密与序列化:通往区块链世界的钥匙 一、前言:离区块链还有多远? 区块链听起来可能遥不可及,似乎是只有密码学专家和资深工程师才能涉足的领域。但事实上,构建一个区块链的核心并不复杂,尤其当你已经掌握了一门系统编程语言,比如 Go。 要真正理解区…...

何谓AI编程【02】AI编程官网以优雅草星云智控为例建设实践-完善顶部-建立各项子页-调整排版-优雅草卓伊凡

何谓AI编程【02】AI编程官网以优雅草星云智控为例建设实践-完善顶部-建立各项子页-调整排版-优雅草卓伊凡 背景 我们以建设星云智控官网来做AI编程实践&#xff0c;很多人以为AI已经强大到不需要程序员了&#xff0c;其实不是&#xff0c;AI更加需要程序员&#xff0c;普通人…...

云原生安全实战:API网关Envoy的鉴权与限流详解

&#x1f525;「炎码工坊」技术弹药已装填&#xff01; 点击关注 → 解锁工业级干货【工具实测|项目避坑|源码燃烧指南】 一、基础概念 1. API网关 作为微服务架构的统一入口&#xff0c;负责路由转发、安全控制、流量管理等核心功能。 2. Envoy 由Lyft开源的高性能云原生…...

【记录坑点问题】IDEA运行:maven-resources-production:XX: OOM: Java heap space

问题&#xff1a;IDEA出现maven-resources-production:operation-service: java.lang.OutOfMemoryError: Java heap space 解决方案&#xff1a;将编译的堆内存增加一点 位置&#xff1a;设置setting-》构建菜单build-》编译器Complier...