当前位置: 首页 > news >正文

神经网络基础-神经网络补充概念-49-adam优化算法

概念

Adam(Adaptive Moment Estimation)是一种优化算法,结合了动量梯度下降法和RMSProp的优点,用于在训练神经网络等深度学习模型时自适应地调整学习率。Adam算法在深度学习中广泛应用,通常能够加速收敛并提高模型性能。

Adam算法综合了动量(momentum)和均方梯度的移动平均(RMSProp)来更新模型参数。与传统的梯度下降法不同,Adam维护了一个每个参数的动量变量和均方梯度的移动平均变量,并在每个迭代步骤中使用这些变量来调整学习率。

步骤

1初始化参数:初始化模型的参数。

2初始化动量变量和均方梯度的移动平均:初始化动量变量为零向量,初始化均方梯度的移动平均为零向量。

3计算梯度:计算当前位置的梯度。

4更新动量变量:计算动量变量的移动平均。

momentum = beta1 * momentum + (1 - beta1) * gradient

其中,beta1 是用于计算动量变量移动平均的超参数。
5更新均方梯度的移动平均:计算均方梯度的移动平均。

moving_average = beta2 * moving_average + (1 - beta2) * gradient^2

其中,beta2 是用于计算均方梯度的移动平均的超参数
6修正偏差
对动量变量和均方梯度的移动平均进行偏差修正,以减轻初始迭代的影响。

corrected_momentum = momentum / (1 - beta1^t)
corrected_moving_average = moving_average / (1 - beta2^t)

7更新参数

parameter = parameter - learning_rate * corrected_momentum / (sqrt(corrected_moving_average) + epsilon)

其中,epsilon 是一个小的常数,防止分母为零。

8重复迭代:重复执行步骤 3 到 7,直到达到预定的迭代次数(epochs)或收敛条件。

代码实现

import numpy as np
import matplotlib.pyplot as plt# 生成随机数据
np.random.seed(0)
X = 2 * np.random.rand(100, 1)
y = 4 + 3 * X + np.random.randn(100, 1)# 添加偏置项
X_b = np.c_[np.ones((100, 1)), X]# 初始化参数
theta = np.random.randn(2, 1)# 学习率
learning_rate = 0.1# Adam参数
beta1 = 0.9
beta2 = 0.999
epsilon = 1e-8
momentum = np.zeros_like(theta)
moving_average = np.zeros_like(theta)# 迭代次数
n_iterations = 1000# Adam优化
for iteration in range(n_iterations):gradients = 2 / 100 * X_b.T.dot(X_b.dot(theta) - y)momentum = beta1 * momentum + (1 - beta1) * gradientsmoving_average = beta2 * moving_average + (1 - beta2) * gradients**2corrected_momentum = momentum / (1 - beta1**(iteration+1))corrected_moving_average = moving_average / (1 - beta2**(iteration+1))theta = theta - learning_rate * corrected_momentum / (np.sqrt(corrected_moving_average) + epsilon)# 绘制数据和拟合直线
plt.scatter(X, y)
plt.plot(X, X_b.dot(theta), color='red')
plt.xlabel('X')
plt.ylabel('y')
plt.title('Linear Regression

相关文章:

神经网络基础-神经网络补充概念-49-adam优化算法

概念 Adam(Adaptive Moment Estimation)是一种优化算法,结合了动量梯度下降法和RMSProp的优点,用于在训练神经网络等深度学习模型时自适应地调整学习率。Adam算法在深度学习中广泛应用,通常能够加速收敛并提高模型性能…...

Java:正则表达式书写规则及相关案例:检验QQ号码,校验手机号码,邮箱格式,当前时间

正则表达式 目标:体验一下使用正则表达式来校验数据格式的合法性。需求:校验QQ号码是否正确,要求全部是数字,长度是(6-20)之间,不能以0开头 首先用自己编写的程序判断QQ号码是否正确 public static void main(String[] args) {Sy…...

图数据库_Neo4j_Centos7.9安装Neo4j社区版3.5.4_基于jdk1.8---Neo4j图数据库工作笔记0011

首先上传安装包,到opt/soft目录 然后看一下jdk安装的是什么版本的,因为在neo4j 4以后就必须要用jdk11 以上的版本,我这里还用着jdk1.8 所以 我这里用3.5.4的版本 关于下载地址: https://dist.neo4j.org/neo4j-community-3.5.4-unix.tar.gz 然后再去解压到/opt/module目录下 …...

使用Rust编写的一款使用遗传算法、神经网络、WASM技术的模拟生物进化的程序

模拟生物进化程序 Github地址:FishLife 期待各位的star✨✨✨ 本项目是一个模拟生物进化的程序,利用遗传算法、神经网络技术对鱼的眼睛和大脑进行模拟。该项目是使用 Rust 语言编写的,并编译为 WebAssembly (Wasm) 格式,使其可以…...

UE4/UE5 “无法双击打开.uproject 点击无反应“解决

一、方法一:运行UnrealVersionSelector.exe 1.找到Epic Game Lancher的安装目录, 在lancher->Engine->Binaries->Win64->UnrealVersionSelector.exe 2.把UnrealVersionSelector.exe 分别拷贝到UE4 不同版本引擎的 Engine->Binaries->…...

【前端】深入理解CSS定位

目录 一、前言二、定位组成1、定位模式1.1、静态定位static①、语法定义②、特点 1.2、相对定位relative①、语法定义②、特点③、代码示例 1.3、绝对定位absolute①、语法定义②、特点③、代码示例1)、没有祖先元素或者祖先元素没有定位2)、祖先元素有定…...

【问题】分布式事务的场景下如何保证读写分离的数据一致性

我的理解这个题目可以获得以下关键字:分布式处理、读写分离、数据一致性 那么就从”读写分离“做切入口吧,按我的理解其实就是在保证数据一致性的前提下两个(或以上)的数据库分别肩负不同的数据处理任务。太过久远的就不说了&…...

常见的Web安全漏洞有哪些,Web安全漏洞常用测试方法介绍

Web安全漏洞是指在Web应用程序中存在的可能被攻击者利用的漏洞,正确认识和了解这些漏洞对于Web应用程序的开发和测试至关重要。 一、常见的Web安全漏洞类型: 1、跨站脚本攻击(Cross-Site Scripting,XSS):攻击者通过向Web页面注入…...

随机微分方程

应用随机过程|第7章 随机微分方程 见知乎:https://zhuanlan.zhihu.com/p/348366892?utm_sourceqq&utm_mediumsocial&utm_oi1315073218793488384...

下载安装并使用小乌龟TortoiseGit

1、下载TortoiseGit安装包 官网:Download – TortoiseGit – Windows Shell Interface to Githttps://tortoisegit.org/download/ 2、小乌龟汉化包 在官网的下面就有官方提供的下载包 3、安装...

npm ERR!Cannot read properties of null(reading ‘pickAlgorithm’)报错问题解决

当在使用npm包管理器或执行npm命令时,有时候会遇到“npm ERR!Cannot read properties of null(reading ‘pickAlgorithm’)”这个错误提示,这是一个常见的npm错误。 这个错误提示通常说明在使用npm包管理器时,执行了某个npm命令,…...

web前端tips:js继承——组合继承

上篇文章给大家分享了 js继承中的借用构造函数继承 web前端tips:js继承——借用构造函数继承 在借用构造函数继承中,我提到了它的缺点 无法继承父类原型链上的方法和属性,只能继承父类构造函数中的属性和方法 父类的方法无法复用&#xff0…...

(7)(7.3) 自动任务中的相机控制

文章目录 前言 7.3.1 概述 7.3.2 自动任务类型 7.3.3 创建合成图像 前言 本文介绍 ArduPilot 的相机和云台命令,并说明如何在 Mission Planner 中使用这些命令来定义相机勘测任务。这些说明假定已经连接并配置了相机触发器和云台(camera trigger and gimbal hav…...

Python 爬虫小练

Python 爬虫小练 获取贝壳网数据 使用到的模块 标准库 Python3 标准库列表 os 模块:os 模块提供了许多与操作系统交互的函数,例如创建、移动和删除文件和目录,以及访问环境变量等。math 模块:math 模块提供了数学函数&#xf…...

vue3 事件处理 @click

在Vue 3中&#xff0c;事件处理可以通过click指令来实现。click指令用于监听元素的点击事件&#xff0c;并在触发时执行相应的处理函数。 下面是一个简单的示例&#xff0c;展示了如何在Vue 3中处理点击事件&#xff1a; <template><button click"handleClick&…...

【第三阶段】kotlin语言使用replace完成加解密操作

fun main() {val password"ASDAFWEFWVWGEGSDFWEFEWGFS"println("原始密码&#xff1a;$password")//加密操作,就是把字符替换成数字&#xff0c;打乱加密var newPsdpassword.replace(Regex("[ADWF]")){when(it.value){//it.value 这里的每一个字…...

springBoot是如何实现自动装配的

目录 1 什么是自动装配 2 Spring自动装配原理 2.1 SpringBootConfiguration ​编辑 2.2 EnableAutoConfiguration 2.2.1 AutoConfigurationPackage 2.2.2 Import({AutoConfigurationImportSelector.class}) 2.3 ComponentScan 1 什么是自动装配 自动装配就是将官方写好的的…...

基于python+MobileNetV2算法模型实现一个图像识别分类系统

一、目录 算法模型介绍模型使用训练模型评估项目扩展 二、算法模型介绍 图像识别是计算机视觉领域的重要研究方向&#xff0c;它在人脸识别、物体检测、图像分类等领域有着广泛的应用。随着移动设备的普及和计算资源的限制&#xff0c;设计高效的图像识别算法变得尤为重要。…...

管理类联考——逻辑——真题篇——按知识分类——汇总篇——二、论证逻辑——归纳评价——归纳谬误

文章目录 第一节 归纳谬误题-归纳评价-归纳谬误题-归纳评论-归纳谬误-比率→数量,从基数找问题真题(2019-39)-归纳评论-归纳谬误-先归纳题干错误-诉诸人身分成:①诉诸权威:某人在某方面很权威,他做什么都是对的。②人身攻击:因为过往履历有问题,所以做什么都是错的。③…...

C++适配器模式

1 简介&#xff1a; 适配器模式是一种结构型设计模式&#xff0c;用于将一个类的接口转换为客户端所期望的另一个接口。适配器模式允许不兼容的类能够协同工作&#xff0c;通过适配器类来实现接口的转换和适配。 2 实现步骤&#xff1a; 以下是使用C实现适配器模式的步骤&…...

23-Oracle 23 ai 区块链表(Blockchain Table)

小伙伴有没有在金融强合规的领域中遇见&#xff0c;必须要保持数据不可变&#xff0c;管理员都无法修改和留痕的要求。比如医疗的电子病历中&#xff0c;影像检查检验结果不可篡改行的&#xff0c;药品追溯过程中数据只可插入无法删除的特性需求&#xff1b;登录日志、修改日志…...

ssc377d修改flash分区大小

1、flash的分区默认分配16M、 / # df -h Filesystem Size Used Available Use% Mounted on /dev/root 1.9M 1.9M 0 100% / /dev/mtdblock4 3.0M...

c++ 面试题(1)-----深度优先搜索(DFS)实现

操作系统&#xff1a;ubuntu22.04 IDE:Visual Studio Code 编程语言&#xff1a;C11 题目描述 地上有一个 m 行 n 列的方格&#xff0c;从坐标 [0,0] 起始。一个机器人可以从某一格移动到上下左右四个格子&#xff0c;但不能进入行坐标和列坐标的数位之和大于 k 的格子。 例…...

Cinnamon修改面板小工具图标

Cinnamon开始菜单-CSDN博客 设置模块都是做好的&#xff0c;比GNOME简单得多&#xff01; 在 applet.js 里增加 const Settings imports.ui.settings;this.settings new Settings.AppletSettings(this, HTYMenusonichy, instance_id); this.settings.bind(menu-icon, menu…...

如何理解 IP 数据报中的 TTL?

目录 前言理解 前言 面试灵魂一问&#xff1a;说说对 IP 数据报中 TTL 的理解&#xff1f;我们都知道&#xff0c;IP 数据报由首部和数据两部分组成&#xff0c;首部又分为两部分&#xff1a;固定部分和可变部分&#xff0c;共占 20 字节&#xff0c;而即将讨论的 TTL 就位于首…...

CSS设置元素的宽度根据其内容自动调整

width: fit-content 是 CSS 中的一个属性值&#xff0c;用于设置元素的宽度根据其内容自动调整&#xff0c;确保宽度刚好容纳内容而不会超出。 效果对比 默认情况&#xff08;width: auto&#xff09;&#xff1a; 块级元素&#xff08;如 <div>&#xff09;会占满父容器…...

管理学院权限管理系统开发总结

文章目录 &#x1f393; 管理学院权限管理系统开发总结 - 现代化Web应用实践之路&#x1f4dd; 项目概述&#x1f3d7;️ 技术架构设计后端技术栈前端技术栈 &#x1f4a1; 核心功能特性1. 用户管理模块2. 权限管理系统3. 统计报表功能4. 用户体验优化 &#x1f5c4;️ 数据库设…...

MySQL 知识小结(一)

一、my.cnf配置详解 我们知道安装MySQL有两种方式来安装咱们的MySQL数据库&#xff0c;分别是二进制安装编译数据库或者使用三方yum来进行安装,第三方yum的安装相对于二进制压缩包的安装更快捷&#xff0c;但是文件存放起来数据比较冗余&#xff0c;用二进制能够更好管理咱们M…...

Mysql8 忘记密码重置,以及问题解决

1.使用免密登录 找到配置MySQL文件&#xff0c;我的文件路径是/etc/mysql/my.cnf&#xff0c;有的人的是/etc/mysql/mysql.cnf 在里最后加入 skip-grant-tables重启MySQL服务 service mysql restartShutting down MySQL… SUCCESS! Starting MySQL… SUCCESS! 重启成功 2.登…...

AI+无人机如何守护濒危物种?YOLOv8实现95%精准识别

【导读】 野生动物监测在理解和保护生态系统中发挥着至关重要的作用。然而&#xff0c;传统的野生动物观察方法往往耗时耗力、成本高昂且范围有限。无人机的出现为野生动物监测提供了有前景的替代方案&#xff0c;能够实现大范围覆盖并远程采集数据。尽管具备这些优势&#xf…...