当前位置: 首页 > news >正文

实践教程|基于 pytorch 实现模型剪枝

PyTorch剪枝方法详解,附详细代码。

  • 一,剪枝分类

  • 1.1,非结构化剪枝

  • 1.2,结构化剪枝

  • 1.3,本地与全局修剪

  • 二,PyTorch 的剪枝

  • 2.1,pytorch 剪枝工作原理

  • 2.2,局部剪枝

  • 2.3,全局非结构化剪枝

  • 三,总结

  • 参考资料

一,剪枝分类

所谓模型剪枝,其实是一种从神经网络中移除"不必要"权重或偏差(weigths/bias)的模型压缩技术。关于什么参数才是“不必要的”,这是一个目前依然在研究的领域。

1.1,非结构化剪枝

非结构化剪枝(Unstructured Puning)是指修剪参数的单个元素,比如全连接层中的单个权重、卷积层中的单个卷积核参数元素或者自定义层中的浮点数(scaling floats)。其重点在于,剪枝权重对象是随机的,没有特定结构,因此被称为非结构化剪枝

1.2,结构化剪枝

与非结构化剪枝相反,结构化剪枝会剪枝整个参数结构。比如,丢弃整行或整列的权重,或者在卷积层中丢弃整个过滤器(Filter)。

1.3,本地与全局修剪

剪枝可以在每层(局部)或多层/所有层(全局)上进行。

二,PyTorch 的剪枝

目前 PyTorch 框架支持的权重剪枝方法有:

  • Random: 简单地修剪随机参数。

  • Magnitude: 修剪权重最小的参数(例如它们的 L2 范数)

以上两种方法实现简单、计算容易,且可以在没有任何数据的情况下应用。

2.1,pytorch 剪枝工作原理

剪枝功能在 torch.nn.utils.prune 类中实现,代码在文件 torch/nn/utils/prune.py 中,主要剪枝类如下图所示。

图片

pytorch_pruning_api_file.png

剪枝原理是基于张量(Tensor)的掩码(Mask)实现。掩码是一个与张量形状相同的布尔类型的张量,掩码的值为 True 表示相应位置的权重需要保留,掩码的值为 False 表示相应位置的权重可以被删除。

Pytorch 将原始参数 <param> 复制到名为 <param>_original 的参数中,并创建一个缓冲区来存储剪枝掩码 <param>_mask。同时,其也会创建一个模块级的 forward_pre_hook 回调函数(在模型前向传播之前会被调用的回调函数),将剪枝掩码应用于原始权重。

pytorch 剪枝的 api 和教程比较混乱,我个人将做了如下表格,希望能将 api 和剪枝方法及分类总结好。

图片

pytorch_pruning_api

pytorch 中进行模型剪枝的工作流程如下:

  1. 选择剪枝方法(或者子类化 BasePruningMethod 实现自己的剪枝方法)。

  2. 指定剪枝模块和参数名称。

  3. 设置剪枝方法的参数,比如剪枝比例等。

2.2,局部剪枝

Pytorch 框架中的局部剪枝有非结构化和结构化剪枝两种类型,值得注意的是结构化剪枝只支持局部不支持全局。

2.2.1,局部非结构化剪枝

1,局部非结构化剪枝(Locall Unstructured Pruning)对应函数原型如下:

def random_unstructured(module, name, amount)  

1,函数功能:用于对权重参数张量进行非结构化剪枝。该方法会在张量中随机选择一些权重或连接进行剪枝,剪枝率由用户指定。2,函数参数定义:

  • module (nn.Module): 需要剪枝的网络层/模块,例如 nn.Conv2d() 和 nn.Linear()。

  • name (str): 要剪枝的参数名称,比如 “weight” 或 “bias”。

  • amount (int or float): 指定要剪枝的数量,如果是 0~1 之间的小数,则表示剪枝比例;如果是证书,则直接剪去参数的绝对数量。比如amount=0.2 ,表示将随机选择 20% 的元素进行剪枝。

3,下面是 random_unstructured 函数的使用示例。

import torch  
import torch.nn.utils.prune as prune  
conv = torch.nn.Conv2d(1, 1, 4)  
prune.random_unstructured(conv, name="weight", amount=0.5)  
conv.weight  
"""  
tensor([[[[-0.1703,  0.0000, -0.0000,  0.0690],  [ 0.1411,  0.0000, -0.0000, -0.1031],  [-0.0527,  0.0000,  0.0640,  0.1666],  [ 0.0000, -0.0000, -0.0000,  0.2281]]]], grad_fn=<MulBackward0>)  
"""  

可以看出输出的 conv 层中权重值有一半比例为 0

2.2.2,局部结构化剪枝

局部结构化剪枝(Locall Structured Pruning)有两种函数,对应函数原型如下:

def random_structured(module, name, amount, dim)  
def ln_structured(module, name, amount, n, dim, importance_scores=None)  

1,函数功能

与非结构化移除的是连接权重不同,结构化剪枝移除的是整个通道权重。

2,参数定义

与局部非结构化函数非常相似,唯一的区别是您必须定义 dim 参数(ln_structured 函数多了 n 参数)。

n 表示剪枝的范数,dim 表示剪枝的维度。

对于 torch.nn.Linear:

  • dim = 0:移除一个神经元。

  • dim = 1:移除与一个输入的所有连接。

对于 torch.nn.Conv2d:

  • dim = 0(Channels) : 通道 channels 剪枝/过滤器 filters 剪枝

  • dim = 1(Neurons): 二维卷积核 kernel 剪枝,即与输入通道相连接的 kernel

2.2.3,局部结构化剪枝示例代码

在写示例代码之前,我们先需要理解 Conv2d 函数参数、卷积核 shape、轴以及张量的关系。首先,Conv2d 函数原型如下;

class torch.nn.Conv2d(in_channels, out_channels, kernel_size, stride=1, padding=0, dilation=1, groups=1, bias=True)  

而 pytorch 中常规卷积的卷积核权重 shape 都为(C_out, C_in, kernel_height, kernel_width),所以在代码中卷积层权重 shape[3, 2, 3, 3],dim = 0 对应的是 shape [3, 2, 3, 3] 中的 3。这里我们 dim 设定了哪个轴,那自然剪枝之后权重张量对应的轴机会发生变换。

图片

dim

理解了前面的关键概念,下面就可以实际使用了,dim=0 的示例如下所示。

conv = torch.nn.Conv2d(2, 3, 3)  
norm1 = torch.norm(conv.weight, p=1, dim=[1,2,3])  
print(norm1)  
"""  
tensor([1.9384, 2.3780, 1.8638], grad_fn=<NormBackward1>)  
"""  
prune.ln_structured(conv, name="weight", amount=1, n=2, dim=0)  
print(conv.weight)  
"""  
tensor([[[[-0.0005,  0.1039,  0.0306],  [ 0.1233,  0.1517,  0.0628],  [ 0.1075, -0.0606,  0.1140]],  [[ 0.2263, -0.0199,  0.1275],  [-0.0455, -0.0639, -0.2153],  [ 0.1587, -0.1928,  0.1338]]],  [[[-0.2023,  0.0012,  0.1617],  [-0.1089,  0.2102, -0.2222],  [ 0.0645, -0.2333, -0.1211]],  [[ 0.2138, -0.0325,  0.0246],  [-0.0507,  0.1812, -0.2268],  [-0.1902,  0.0798,  0.0531]]],  [[[ 0.0000, -0.0000, -0.0000],  [ 0.0000, -0.0000, -0.0000],  [ 0.0000, -0.0000,  0.0000]],  [[ 0.0000,  0.0000,  0.0000],  [-0.0000,  0.0000,  0.0000],  [-0.0000, -0.0000, -0.0000]]]], grad_fn=<MulBackward0>)  
"""  

从运行结果可以明显看出,卷积层参数的最后一个通道参数张量被移除了(为 0 张量),其解释参见下图。

图片

dim_understand

dim = 1 的情况:

conv = torch.nn.Conv2d(2, 3, 3)  
norm1 = torch.norm(conv.weight, p=1, dim=[0, 2,3])  
print(norm1)  
"""  
tensor([3.1487, 3.9088], grad_fn=<NormBackward1>)  
"""  
prune.ln_structured(conv, name="weight", amount=1, n=2, dim=1)  
print(conv.weight)  
"""  
tensor([[[[ 0.0000, -0.0000, -0.0000],  [-0.0000,  0.0000,  0.0000],  [-0.0000,  0.0000, -0.0000]],  [[-0.2140,  0.1038,  0.1660],  [ 0.1265, -0.1650, -0.2183],  [-0.0680,  0.2280,  0.2128]]],  [[[-0.0000,  0.0000,  0.0000],  [ 0.0000,  0.0000, -0.0000],  [-0.0000, -0.0000, -0.0000]],  [[-0.2087,  0.1275,  0.0228],  [-0.1888, -0.1345,  0.1826],  [-0.2312, -0.1456, -0.1085]]],  [[[-0.0000,  0.0000,  0.0000],  [ 0.0000, -0.0000,  0.0000],  [ 0.0000, -0.0000,  0.0000]],  [[-0.0891,  0.0946, -0.1724],  [-0.2068,  0.0823,  0.0272],  [-0.2256, -0.1260, -0.0323]]]], grad_fn=<MulBackward0>)  
"""  

很明显,对于 dim=1的维度,其第一个张量的 L2 范数更小,所以shape 为 [2, 3, 3] 的张量中,第一个 [3, 3] 张量参数会被移除(即张量为 0 矩阵) 。

2.3,全局非结构化剪枝

前文的 local 剪枝的对象是特定网络层,而 global 剪枝是将模型看作一个整体去移除指定比例(数量)的参数,同时 global 剪枝结果会导致模型中每层的稀疏比例是不一样的。

全局非结构化剪枝函数原型如下:

# v1.4.0 版本  
def global_unstructured(parameters, pruning_method, **kwargs)  
# v2.0.0-rc2版本  
def global_unstructured(parameters, pruning_method, importance_scores=None, **kwargs):  

1,函数功能

随机选择全局所有参数(包括权重和偏置)的一部分进行剪枝,而不管它们属于哪个层。

2,参数定义

  • parameters((Iterable of (module, name) tuples)): 修剪模型的参数列表,列表中的元素是 (module, name)。

  • pruning_method(function): 目前好像官方只支持 pruning_method=prune.L1Unstuctured,另外也可以是自己实现的非结构化剪枝方法函数。

  • importance_scores: 表示每个参数的重要性得分,如果为 None,则使用默认得分。

  • **kwargs: 表示传递给特定剪枝方法的额外参数。比如 amount 指定要剪枝的数量。

3,global_unstructured 函数的示例代码如下所示。

device = torch.device("cuda" if torch.cuda.is_available() else "cpu")  class LeNet(nn.Module):  def __init__(self):  super(LeNet, self).__init__()  # 1 input image channel, 6 output channels, 3x3 square conv kernel  self.conv1 = nn.Conv2d(1, 6, 3)  self.conv2 = nn.Conv2d(6, 16, 3)  self.fc1 = nn.Linear(16 * 5 * 5, 120)  # 5x5 image dimension  self.fc2 = nn.Linear(120, 84)  self.fc3 = nn.Linear(84, 10)  def forward(self, x):  x = F.max_pool2d(F.relu(self.conv1(x)), (2, 2))  x = F.max_pool2d(F.relu(self.conv2(x)), 2)  x = x.view(-1, int(x.nelement() / x.shape[0]))  x = F.relu(self.fc1(x))  x = F.relu(self.fc2(x))  x = self.fc3(x)  return x  model = LeNet().to(device=device)  model = LeNet()  parameters_to_prune = (  (model.conv1, 'weight'),  (model.conv2, 'weight'),  (model.fc1, 'weight'),  (model.fc2, 'weight'),  (model.fc3, 'weight'),  
)  prune.global_unstructured(  parameters_to_prune,  pruning_method=prune.L1Unstructured,  amount=0.2,  
)  
# 计算卷积层和整个模型的稀疏度  
# 其实调用的是 Tensor.numel 内内函数,返回输入张量中元素的总数  
print(  "Sparsity in conv1.weight: {:.2f}%".format(  100. * float(torch.sum(model.conv1.weight == 0))  / float(model.conv1.weight.nelement())  )  
)  
print(  "Global sparsity: {:.2f}%".format(  100. * float(  torch.sum(model.conv1.weight == 0)  + torch.sum(model.conv2.weight == 0)  + torch.sum(model.fc1.weight == 0)  + torch.sum(model.fc2.weight == 0)  + torch.sum(model.fc3.weight == 0)  )  / float(  model.conv1.weight.nelement()  + model.conv2.weight.nelement()  + model.fc1.weight.nelement()  + model.fc2.weight.nelement()  + model.fc3.weight.nelement()  )  )  
)  
# 程序运行结果  
"""  
Sparsity in conv1.weight: 3.70%  
Global sparsity: 20.00%  
"""  

运行结果表明,虽然模型整体(全局)的稀疏度是 20%,但每个网络层的稀疏度不一定是 20%。

三,总结

另外,pytorch 框架还提供了一些帮助函数:

  1. torch.nn.utils.prune.is_pruned(module): 判断模块 是否被剪枝。

  2. torch.nn.utils.prune.remove(module, name):用于将指定模块中指定参数上的剪枝操作移除,从而恢复该参数的原始形状和数值。

虽然 PyTorch 提供了内置剪枝 API ,也支持了一些非结构化和结构化剪枝方法,但是 API 比较混乱,对应文档描述也不清晰,所以后面我还会结合微软的开源 nni 工具来实现模型剪枝功能。

更多剪枝方法实践,可以参考这个 github 仓库:Model-Compression。

参考资料

  1. How to Prune Neural Networks with PyTorch

  2. PRUNING TUTORIAL

  3. PyTorch Pruning

相关文章:

实践教程|基于 pytorch 实现模型剪枝

PyTorch剪枝方法详解&#xff0c;附详细代码。 一&#xff0c;剪枝分类 1.1&#xff0c;非结构化剪枝 1.2&#xff0c;结构化剪枝 1.3&#xff0c;本地与全局修剪 二&#xff0c;PyTorch 的剪枝 2.1&#xff0c;pytorch 剪枝工作原理 2.2&#xff0c;局部剪枝 2.3&#…...

[Docker精进篇] Docker镜像构建和实践 (三)

前言&#xff1a; Docker镜像构建的作用是将应用程序及其依赖打包到一个可移植、自包含的镜像中&#xff0c;以便在不同环境中快速、可靠地部署和运行应用程序。 文章目录 Docker镜像构建1️⃣是什么&#xff1f;2️⃣为什么&#xff1f;3️⃣镜像构建一、用现有容器构建新镜像…...

【Unity细节】Unity中的层级LayerMask

&#x1f468;‍&#x1f4bb;个人主页&#xff1a;元宇宙-秩沅 hallo 欢迎 点赞&#x1f44d; 收藏⭐ 留言&#x1f4dd; 加关注✅! 本文由 秩沅 原创 &#x1f636;‍&#x1f32b;️收录于专栏&#xff1a;unity细节和bug &#x1f636;‍&#x1f32b;️优质专栏 ⭐【…...

修改el-table行悬停状态的背景颜色

.content:deep().el-table tr:hover>td {background-color: #f5f5f5 !important; /* 设置悬停时的背景颜色 */ }/*这一点很重要&#xff0c;否则可能会导致hover行时操作列还是原来的背景色*/ .content:deep().el-table__body tr.hover-row>td{background-color: #f5f5f5…...

记一次mysql not in的使用问题

现象&#xff1a;使用not in 某个id集合&#xff0c;出现脏数据&#xff0c;存在null数据。例如&#xff1a;not in(1,2,null)&#xff0c;结果会一条数据都没有&#xff0c;为空 原因&#xff1a; 当使用NOT IN操作符时&#xff0c;传递给它的值列表中不能包含NULL值&#xf…...

JavaFx基础学习【四】:UI控件的通用属性

目录 前言 一、介绍 二、继承关系 三、常用通用属性 四、属性Properties 五、属性绑定 六、属性监听 七、事件驱动 八、其他章节 前言 如果你还没有看过前面的文章&#xff0c;可以通过以下链接快速前往学习&#xff1a; JavaFx基础学习【一】&#xff1a;基本认识_明…...

【Leetcode】101.对称二叉树

一、题目 1、题目描述 给你一个二叉树的根节点 root , 检查它是否轴对称。 示例1: 输入:root = [1,2,2,3,4,4,3] 输出:true示例2: 输入:root = [1,2,2,null,3,null,3] 输出:false提示: 树中节点数目在范围 [1, 1000] 内-100 <= Node.val <= 100进阶:你可以…...

用Java实现原神抽卡算法

哈喽~大家好&#xff0c;好久没有更新了&#xff0c;也确实遇到了很多事&#xff0c;这篇开始恢复更新&#xff0c;喜欢的话&#xff0c;可以给个的三连&#xff0c;什么&#xff1f;你要白嫖&#xff1f;那可以给个免费的赞麻。 &#x1f947;个人主页&#xff1a;个人主页​​…...

微服务—Eureka注册中心

eureka相当于是一个公司的管理人事HR,各部门之间如果有合作时&#xff0c;由HR进行人员的分配以及调度&#xff0c;具体选哪个人&#xff0c;全凭HR的心情&#xff0c;如果你这个部门存在没有意义&#xff0c;直接把你这个部门撤销&#xff0c;全体人员裁掉&#xff0c;所以不想…...

AI问答:JSBridge / WebView 与 Native 通信

一、理解JSBridge JSBridge是一种连接JavaScript和Native代码的桥梁&#xff0c;它提供了一种方法&#xff0c;使得JavaScript可以直接调用Native的代码&#xff0c;同时使得Native的代码也能直接调用JavaScript的方法&#xff0c;从而实现了JavaScript和Native之间的相互调用和…...

Mybatis动态SQL,标签大全

动态SQL常用场景 批量删除delete from t_car where id in(1,2,3,4,5,6,......这里的值是动态的&#xff0c;根据用户选择的 id不同&#xff0c;值是不同的);多条件查询哪些字段会作为查询条件是不确定的&#xff0c;根据用户而定 select * from 1 t_car where brand like 丰田…...

zotero在不同系统的安装(win/linux)

1 window系统安装 zotero 官网&#xff1a; https://www.zotero.org/ 官方文档 &#xff1a;https://www.zotero.org/support/ (官方)推荐常用的插件: https://www.zotero.org/support/plugins 入门视频推荐&#xff1a; Zotero 文献管理与知识整理最佳实践 点击 exe文件自…...

web会话跟踪以及JWT响应拦截机制

目录 JWT 会话跟踪 token 响应拦截器 http是无状态的&#xff0c;登录成功后&#xff0c;客户端就与服务器断开连接&#xff0c;之后再向后端发送请求时&#xff0c;后端需要知道前端是哪个用户在进行操作。 JWT Json web token (JWT), 是为了在网络应用环境间传递声明而…...

Web菜鸟入门教程 - Swagger实现自动生成文档

如果是一个人把啥都开发了&#xff0c;那用不到Swagger-UI&#xff0c;但一般情况是前后端分离的&#xff0c;所以就需要告诉前端开发人员都有哪些接口&#xff0c;传入什么参数&#xff0c;怎么调用&#xff0c;返回什么。有了Swagger-UI就能把这部分文档编写的业务给省去了。…...

2023国赛数学建模思路 - 复盘:校园消费行为分析

文章目录 0 赛题思路1 赛题背景2 分析目标3 数据说明4 数据预处理5 数据分析5.1 食堂就餐行为分析5.2 学生消费行为分析 建模资料 0 赛题思路 &#xff08;赛题出来以后第一时间在CSDN分享&#xff09; https://blog.csdn.net/dc_sinor?typeblog 1 赛题背景 校园一卡通是集…...

第7章:贝叶斯分类器

贝叶斯决策论 贝叶斯分类器&#xff1a;使用贝叶斯公式 贝叶斯学习&#xff1a;使用分布估计&#xff08;不同于频率主义的点估计&#xff09; 极大似然估计 朴素贝叶斯分类 半朴素贝叶斯 条件独立性假设&#xff0c;在现实生活中往往很难成立。 半朴素贝叶 斯的一个常用策略…...

【LeetCode】88.合并两个有序数组

题目 给你两个按 非递减顺序 排列的整数数组 nums1 和 nums2&#xff0c;另有两个整数 m 和 n &#xff0c;分别表示 nums1 和 nums2 中的元素数目。 请你 合并 nums2 到 nums1 中&#xff0c;使合并后的数组同样按 非递减顺序 排列。 注意&#xff1a;最终&#xff0c;合并…...

05 - 研究 .git 目录

查看所有文章链接&#xff1a;&#xff08;更新中&#xff09;GIT常用场景- 目录 文章目录 1. HEAD2. config3. refs4. objects 1. HEAD 2. config 3. refs 4. objects Git对象一共有三种&#xff1a;数据对象 blob、树对象 tree以及提交对象 commit&#xff0c;这些对象都被保…...

MySQL之索引和事务

索引什么是索引索引怎么用索引的原理 事务使用事务事务特性MySQL隔离级别 索引 什么是索引 索引包含数据表所有记录的引用指针&#xff1b;你可以对某一列或者多列创建索引和指定不同的类型&#xff08;唯一索引、主键索引、普通索引等不同类型&#xff1b;他们底层实现也是不…...

⛳ 将本地已有的项目上传到 git 仓库

目录 ⛳ 将本地已有的项目上传到 git 仓库&#x1f3ed; 一、克隆 拷贝&#x1f3a8; 二、强行合并两个仓库 ⛳ 将本地已有的项目上传到 git 仓库 有两种方法&#xff1a; ​ 一、克隆 拷贝 ​ 二、强行合并两个仓库 &#x1f3ed; 一、克隆 拷贝 ​ 直接用把远程仓库拉到本…...

Python爬虫实战:研究MechanicalSoup库相关技术

一、MechanicalSoup 库概述 1.1 库简介 MechanicalSoup 是一个 Python 库,专为自动化交互网站而设计。它结合了 requests 的 HTTP 请求能力和 BeautifulSoup 的 HTML 解析能力,提供了直观的 API,让我们可以像人类用户一样浏览网页、填写表单和提交请求。 1.2 主要功能特点…...

【大模型RAG】拍照搜题技术架构速览:三层管道、两级检索、兜底大模型

摘要 拍照搜题系统采用“三层管道&#xff08;多模态 OCR → 语义检索 → 答案渲染&#xff09;、两级检索&#xff08;倒排 BM25 向量 HNSW&#xff09;并以大语言模型兜底”的整体框架&#xff1a; 多模态 OCR 层 将题目图片经过超分、去噪、倾斜校正后&#xff0c;分别用…...

《用户共鸣指数(E)驱动品牌大模型种草:如何抢占大模型搜索结果情感高地》

在注意力分散、内容高度同质化的时代&#xff0c;情感连接已成为品牌破圈的关键通道。我们在服务大量品牌客户的过程中发现&#xff0c;消费者对内容的“有感”程度&#xff0c;正日益成为影响品牌传播效率与转化率的核心变量。在生成式AI驱动的内容生成与推荐环境中&#xff0…...

大学生职业发展与就业创业指导教学评价

这里是引用 作为软工2203/2204班的学生&#xff0c;我们非常感谢您在《大学生职业发展与就业创业指导》课程中的悉心教导。这门课程对我们即将面临实习和就业的工科学生来说至关重要&#xff0c;而您认真负责的教学态度&#xff0c;让课程的每一部分都充满了实用价值。 尤其让我…...

Maven 概述、安装、配置、仓库、私服详解

目录 1、Maven 概述 1.1 Maven 的定义 1.2 Maven 解决的问题 1.3 Maven 的核心特性与优势 2、Maven 安装 2.1 下载 Maven 2.2 安装配置 Maven 2.3 测试安装 2.4 修改 Maven 本地仓库的默认路径 3、Maven 配置 3.1 配置本地仓库 3.2 配置 JDK 3.3 IDEA 配置本地 Ma…...

Spring AI Chat Memory 实战指南:Local 与 JDBC 存储集成

一个面向 Java 开发者的 Sring-Ai 示例工程项目&#xff0c;该项目是一个 Spring AI 快速入门的样例工程项目&#xff0c;旨在通过一些小的案例展示 Spring AI 框架的核心功能和使用方法。 项目采用模块化设计&#xff0c;每个模块都专注于特定的功能领域&#xff0c;便于学习和…...

Vue ③-生命周期 || 脚手架

生命周期 思考&#xff1a;什么时候可以发送初始化渲染请求&#xff1f;&#xff08;越早越好&#xff09; 什么时候可以开始操作dom&#xff1f;&#xff08;至少dom得渲染出来&#xff09; Vue生命周期&#xff1a; 一个Vue实例从 创建 到 销毁 的整个过程。 生命周期四个…...

Python 高效图像帧提取与视频编码:实战指南

Python 高效图像帧提取与视频编码:实战指南 在音视频处理领域,图像帧提取与视频编码是基础但极具挑战性的任务。Python 结合强大的第三方库(如 OpenCV、FFmpeg、PyAV),可以高效处理视频流,实现快速帧提取、压缩编码等关键功能。本文将深入介绍如何优化这些流程,提高处理…...

ZYNQ学习记录FPGA(一)ZYNQ简介

一、知识准备 1.一些术语,缩写和概念&#xff1a; 1&#xff09;ZYNQ全称&#xff1a;ZYNQ7000 All Pgrammable SoC 2&#xff09;SoC:system on chips(片上系统)&#xff0c;对比集成电路的SoB&#xff08;system on board&#xff09; 3&#xff09;ARM&#xff1a;处理器…...

深入理解 React 样式方案

React 的样式方案较多,在应用开发初期,开发者需要根据项目业务具体情况选择对应样式方案。React 样式方案主要有: 1. 内联样式 2. module css 3. css in js 4. tailwind css 这些方案中,均有各自的优势和缺点。 1. 方案优劣势 1. 内联样式: 简单直观,适合动态样式和…...