当前位置: 首页 > news >正文

open cv学习 (十)图形检测

图形检测

demo1
# 绘制几何图像的轮廓
import cv2img = cv2.imread("./shape1.png")gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
# 将图像二值化
t, binary = cv2.threshold(gray, 127, 255, cv2.THRESH_BINARY)# 检测图像中的所有轮廓
contours, hierarchy = cv2.findContours(binary, cv2.RETR_LIST, cv2.CHAIN_APPROX_NONE)cv2.drawContours(img, contours, 3, (0, 0, 255), 5)
cv2.imshow("img", img)
cv2.waitKey()
cv2.destroyAllWindows()
demo2
# 绘制花朵的轮廓
import cv2img = cv2.imread("flower.png")cv2.imshow("img", img)
img = cv2.medianBlur(img, 5)gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
t, binary = cv2.threshold(gray, 127, 255, cv2.THRESH_BINARY)cv2.imshow("binary", binary)contours, hierarchy = cv2.findContours(binary, cv2.RETR_LIST, cv2.CHAIN_APPROX_NONE)
cv2.drawContours(img, contours, -1, (0, 0, 255), 2)
cv2.imshow("contours", img)
cv2.waitKey()
cv2.destroyAllWindows()
demo3
import cv2
# 矩形包围框img = cv2.imread("./shape2.png")
gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
t, binary = cv2.threshold(gray, 127, 255, cv2.THRESH_BINARY)contours, hierarchy = cv2.findContours(binary, cv2.RETR_LIST, cv2.CHAIN_APPROX_SIMPLE)
# 获取第一个轮廓的最小矩形边框
x, y, w, h = cv2.boundingRect(contours[0])
cv2.rectangle(img, (x, y), (x + w, y + h), (0, 0, 255), 2)
cv2.imshow("img", img)
cv2.waitKey()
cv2.destroyAllWindows()
demo4
import cv2
# 圆形包围框
img = cv2.imread("./shape2.png")
gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
t, binary = cv2.threshold(gray, 127, 255, cv2.THRESH_BINARY)contours, hierarchy = cv2.findContours(binary, cv2.RETR_LIST, cv2.CHAIN_APPROX_SIMPLE)
# 获取第一个轮廓的最小矩形边框
center, radius = cv2.minEnclosingCircle(contours[0])
x = int(round(center[0]))
y = int(round(center[1]))
cv2.circle(img, (x, y), int(radius), (0, 0, 255), 2)
cv2.imshow("img", img)
cv2.waitKey()
cv2.destroyAllWindows()
demo5
import cv2
# 凸包
img = cv2.imread("./shape2.png")
gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
t, binary = cv2.threshold(gray, 127, 255, cv2.THRESH_BINARY)contours, hierarchy = cv2.findContours(binary, cv2.RETR_LIST, cv2.CHAIN_APPROX_SIMPLE)
# 获取第一个轮廓的最小矩形边框
hull = cv2.convexHull(contours[0])
cv2.polylines(img, [hull], True, (0, 0, 255), 2)
cv2.imshow("img", img)
cv2.waitKey()
cv2.destroyAllWindows()
demo6
# Canny边缘检测
import cv2img = cv2.imread("flower.png")r1 = cv2.Canny(img, 10, 50)
r2 = cv2.Canny(img, 100, 200)
r3 = cv2.Canny(img, 400, 600)cv2.imshow("img", img)
cv2.imshow("r1", r1)
cv2.imshow("r2", r2)
cv2.imshow("r3", r3)
cv2.waitKey()
cv2.destroyAllWindows()
demo7
# 检测笔图像中出现的直线
import cv2
import numpy as npimg = cv2.imread("./pen.jpg")o = img.copy()o = cv2.medianBlur(o, 5)gray = cv2.cvtColor(o, cv2.COLOR_BGR2GRAY)binary = cv2.Canny(o, 50, 150)lines = cv2.HoughLinesP(binary, 1, np.pi/180, 15, minLineLength=100, maxLineGap=18)for line in lines:x1, y1, x2, y2 = line[0]cv2.line(img, (x1, y1), (x2, y2), (0, 0, 255), 2)cv2.imshow("canny", binary)
cv2.imshow("img", img)
cv2.waitKey()
cv2.destroyAllWindows()
demo8
# 圆环检测
import cv2
import numpy as npimg = cv2.imread("coin.jpg")o = img.copy()
o = cv2.medianBlur(o, 5)
gray = cv2.cvtColor(o, cv2.COLOR_BGR2GRAY)circles = cv2.HoughCircles(gray, cv2.HOUGH_GRADIENT, 1, 70, param1=100, param2=25, minRadius=10, maxRadius=50)
circles = np.uint(np.around(circles))
for c in circles[0]:x, y, r = ccv2.circle(img, (x, y), r, (0, 0, 255), 3)cv2.circle(img, (x, y), 2, (0, 0, 255), 3)cv2.imshow("img", img)
cv2.waitKey()
cv2.destroyAllWindows()

相关文章:

open cv学习 (十)图形检测

图形检测 demo1 # 绘制几何图像的轮廓 import cv2img cv2.imread("./shape1.png")gray cv2.cvtColor(img, cv2.COLOR_BGR2GRAY) # 将图像二值化 t, binary cv2.threshold(gray, 127, 255, cv2.THRESH_BINARY)# 检测图像中的所有轮廓 contours, hierarchy cv2.f…...

【C语言】字符函数和字符串函数

目录 1.求字符串长度strlen 2.长度不受限制的字符串函数 字符串拷贝strcpy 字符串追加strcat 字符串比较strcmp 3.长度受限制的字符串函数介绍strncpy strncat ​编辑strncmp 4.字符串查找strstr 5.字符串分割strtok 6.错误信息报告 strerror perror 7.字符分类函…...

前馈神经网络正则化例子

直接看代码: import torch import numpy as np import random from IPython import display from matplotlib import pyplot as plt import torchvision import torchvision.transforms as transforms mnist_train torchvision.datasets.MNIST(root…...

spring的核心技术---bean的生命周期加案例分析详细易懂

目录 一.spring管理JavaBean的初始化过程(生命周期) Spring Bean的生命周期: 二.spring的JavaBean管理中单例模式及原型(多例)模式 2.1 . 默认为单例,但是可以配置多例 2.2.举例论证 2.2.1 默认单例 2.2…...

【Maven教程】(一)入门介绍篇:Maven基础概念与其他构建工具:理解构建过程与Maven的多重作用,以及与敏捷开发的关系 ~

Maven入门介绍篇 1️⃣ 基础概念1.1 构建1.2 maven对构建的支持1.3 Maven的其他作用 2️⃣ 其他构建工具2.1 IDE2.2 Make2.3 Ant2.4 Jenkins 3️⃣ Maven与敏捷开发🌾 总结 1️⃣ 基础概念 "Maven"可以翻译为 “知识的积累者” 或 “专家”。这个词源于波…...

今天,谷歌Chrome浏览器部署抗量子密码

谷歌已开始部署混合密钥封装机制(KEM),以保护在建立安全的 TLS 网络连接时共享对称加密机密。 8月10日,Chrome 浏览器安全技术项目经理Devon O’Brien解释说,从 8 月 15 日发布的 Chrome 浏览器 116 开始,谷…...

SUMO traci接口控制电动车前往充电站充电

首先需要创建带有停车位的充电站(停车场和充电站二合一),具体参考我的专栏中其他文章。如果在仿真的某个时刻,希望能够控制电动车前往指定的充电站充电,并且在完成充电后继续前往车辆原来的目的地,那么可以使用以下API&#xff1a…...

现代CSS中的换行布局技术

在现代网页设计中,为了适应不同屏幕尺寸和设备类型,换行布局是一项重要的技术。通过合适的布局技术,我们可以实现内容的自适应和优雅的排版。本文将介绍CSS中几种常见的换行布局技术,探索它们的属性、代码示例和解析,帮…...

简单理解Python中的深拷贝与浅拷贝

I. 简介 深拷贝会递归的创建一个完全独立的对象副本,包括所有嵌套的对象,而浅拷贝只复制嵌套对象的引用,不复制嵌套对象本身。 简单来说就是两者都对原对象进行了复制,因此使用is运算符来比较新旧对象时,返回的都是F…...

C++之std::pair<uint64_t, size_t>应用实例(一百七十七)

简介: CSDN博客专家,专注Android/Linux系统,分享多mic语音方案、音视频、编解码等技术,与大家一起成长! 优质专栏:Audio工程师进阶系列【原创干货持续更新中……】🚀 人生格言: 人生…...

前端打开后端返回的HTML格式的数据

前端打开后端返回的 HTML格式 的数据: 后端返回的数据格式如下示例: 前端通过 js 方式处理(核心代码如下) console.log(回调, path); // path 是后端返回的 HTML 格式数据// 必须要存进localstorage,否则会报错&am…...

How to deal with document-oriented data

Schema designData models for e-commerceNuts and bolts of databases, collection, and documents. Principles of schema design What are your application access pattern?Whats the basic unit of data? the basic unit of data is the BSON documentWhat are the ca…...

Http 状态码汇总

文章目录 Http 状态码汇总1xx(信息性状态码)2xx(成功状态码)3xx(重定向状态码)4xx(客户端错误状态码)5xx(服务器错误状态码) Http 状态码汇总 1xx&#xff08…...

mysql自定义实体类框架

根据表结构自动生产实体类和方法,根据反射与io生成,可自定义扩展方法 package com.digital.web.front; /*** pom依赖* <dependency>* <groupId>mysql</groupId>* <artifactId>mysql-connector-java</artifactId>* <version>5.1.27</ve…...

批量将Excel中的第二列内容从拼音转换为汉字

要批量将Excel中的第二列内容从拼音转换为汉字&#xff0c;您可以使用Python的openpyxl库来实现。下面是一个示例代码&#xff0c;演示如何读取Excel文件并将第二列内容进行拼音转汉字&#xff1a; from openpyxl import load_workbook from xpinyin import Pinyin # 打开Exce…...

消息推送:精准推送,提升运营效果,增添平台活力

对于app开发者而言&#xff0c;没有什么途径比消息推送更能直接、即时地触及目标用户群体了。消息推送与我们的日常生活息息相关&#xff0c;各种APP的状态和通知都通过消息推送来告知用户&#xff0c;引起用户的注意&#xff0c;吸引用户点开app。总而言之&#xff0c;推送服务…...

[保研/考研机试] KY43 全排列 北京大学复试上机题 C++实现

题目链接&#xff1a; 全排列https://www.nowcoder.com/share/jump/437195121692001512368 描述 给定一个由不同的小写字母组成的字符串&#xff0c;输出这个字符串的所有全排列。 我们假设对于小写字母有a < b < ... < y < z&#xff0c;而且给定的字符串中的字…...

Java将时间戳转化为特定时区的日期字符串

先上代码&#xff1a; ZonedDateTime dateTime ZonedDateTime.ofInstant(Instant.ofEpochMilli(System.currentTimeMillis()),zone ); //2019-12-01T19:01:4608:00String formattedDate dateTime.format(DateTimeFormatter.ofPattern("yyyy-MM-dd") ); //2019-12-…...

【算法挨揍日记】day03——双指针算法_有效三角形的个数、和为s的两个数字

611. 有效三角形的个数 611. 有效三角形的个数https://leetcode.cn/problems/valid-triangle-number/ 题目描述&#xff1a; 给定一个包含非负整数的数组 nums &#xff0c;返回其中可以组成三角形三条边的三元组个数。 解题思路&#xff1a; 本题是一个关于三角形是否能成立…...

通过 kk 创建 k8s 集群和 kubesphere

官方文档&#xff1a;多节点安装 确保从正确的区域下载 KubeKey export KKZONEcn下载 KubeKey curl -sfL https://get-kk.kubesphere.io | VERSIONv3.0.7 sh -为 kk 添加可执行权限&#xff1a; chmod x kk创建 config 文件 KubeSphere 版本&#xff1a;v3.3 支持的 Kuber…...

【Linux】shell脚本忽略错误继续执行

在 shell 脚本中&#xff0c;可以使用 set -e 命令来设置脚本在遇到错误时退出执行。如果你希望脚本忽略错误并继续执行&#xff0c;可以在脚本开头添加 set e 命令来取消该设置。 举例1 #!/bin/bash# 取消 set -e 的设置 set e# 执行命令&#xff0c;并忽略错误 rm somefile…...

大型活动交通拥堵治理的视觉算法应用

大型活动下智慧交通的视觉分析应用 一、背景与挑战 大型活动&#xff08;如演唱会、马拉松赛事、高考中考等&#xff09;期间&#xff0c;城市交通面临瞬时人流车流激增、传统摄像头模糊、交通拥堵识别滞后等问题。以演唱会为例&#xff0c;暖城商圈曾因观众集中离场导致周边…...

【解密LSTM、GRU如何解决传统RNN梯度消失问题】

解密LSTM与GRU&#xff1a;如何让RNN变得更聪明&#xff1f; 在深度学习的世界里&#xff0c;循环神经网络&#xff08;RNN&#xff09;以其卓越的序列数据处理能力广泛应用于自然语言处理、时间序列预测等领域。然而&#xff0c;传统RNN存在的一个严重问题——梯度消失&#…...

postgresql|数据库|只读用户的创建和删除(备忘)

CREATE USER read_only WITH PASSWORD 密码 -- 连接到xxx数据库 \c xxx -- 授予对xxx数据库的只读权限 GRANT CONNECT ON DATABASE xxx TO read_only; GRANT USAGE ON SCHEMA public TO read_only; GRANT SELECT ON ALL TABLES IN SCHEMA public TO read_only; GRANT EXECUTE O…...

《通信之道——从微积分到 5G》读书总结

第1章 绪 论 1.1 这是一本什么样的书 通信技术&#xff0c;说到底就是数学。 那些最基础、最本质的部分。 1.2 什么是通信 通信 发送方 接收方 承载信息的信号 解调出其中承载的信息 信息在发送方那里被加工成信号&#xff08;调制&#xff09; 把信息从信号中抽取出来&am…...

镜像里切换为普通用户

如果你登录远程虚拟机默认就是 root 用户&#xff0c;但你不希望用 root 权限运行 ns-3&#xff08;这是对的&#xff0c;ns3 工具会拒绝 root&#xff09;&#xff0c;你可以按以下方法创建一个 非 root 用户账号 并切换到它运行 ns-3。 一次性解决方案&#xff1a;创建非 roo…...

Ascend NPU上适配Step-Audio模型

1 概述 1.1 简述 Step-Audio 是业界首个集语音理解与生成控制一体化的产品级开源实时语音对话系统&#xff0c;支持多语言对话&#xff08;如 中文&#xff0c;英文&#xff0c;日语&#xff09;&#xff0c;语音情感&#xff08;如 开心&#xff0c;悲伤&#xff09;&#x…...

IoT/HCIP实验-3/LiteOS操作系统内核实验(任务、内存、信号量、CMSIS..)

文章目录 概述HelloWorld 工程C/C配置编译器主配置Makefile脚本烧录器主配置运行结果程序调用栈 任务管理实验实验结果osal 系统适配层osal_task_create 其他实验实验源码内存管理实验互斥锁实验信号量实验 CMISIS接口实验还是得JlINKCMSIS 简介LiteOS->CMSIS任务间消息交互…...

Golang——7、包与接口详解

包与接口详解 1、Golang包详解1.1、Golang中包的定义和介绍1.2、Golang包管理工具go mod1.3、Golang中自定义包1.4、Golang中使用第三包1.5、init函数 2、接口详解2.1、接口的定义2.2、空接口2.3、类型断言2.4、结构体值接收者和指针接收者实现接口的区别2.5、一个结构体实现多…...

解析奥地利 XARION激光超声检测系统:无膜光学麦克风 + 无耦合剂的技术协同优势及多元应用

在工业制造领域&#xff0c;无损检测&#xff08;NDT)的精度与效率直接影响产品质量与生产安全。奥地利 XARION开发的激光超声精密检测系统&#xff0c;以非接触式光学麦克风技术为核心&#xff0c;打破传统检测瓶颈&#xff0c;为半导体、航空航天、汽车制造等行业提供了高灵敏…...