当前位置: 首页 > news >正文

神经网络基础-神经网络补充概念-01-二分分类

概念

二分分类是一种常见的机器学习任务,其目标是将一组数据点分成两个不同的类别。在二分分类中,每个数据点都有一个与之关联的标签,通常是“正类”或“负类”。算法的任务是根据数据点的特征来学习一个模型,以便能够准确地将新的未标记数据点分配到正确的类别中。

一般步骤

数据收集与准备: 收集包含特征和标签的数据集。确保数据集经过清洗和预处理,特征被适当地提取和编码。

特征工程: 根据任务需求,选择适当的特征,并进行必要的特征变换和缩放,以提高分类模型的性能。

模型选择: 选择适当的机器学习算法或模型来进行分类任务。常见的算法包括逻辑回归、支持向量机(SVM)、决策树、随机森林、神经网络等。

模型训练: 使用训练数据集来训练所选的分类模型。训练的过程就是调整模型参数,使其能够更好地拟合数据,并且能够对未知数据进行准确的分类。

模型评估: 使用测试数据集来评估模型的性能。常见的评估指标包括准确率、精确率、召回率、F1 值等。

调参优化: 根据评估结果,调整模型的超参数以获得更好的性能。可以使用交叉验证等方法来选择最佳的参数组合。

预测与应用: 当模型达到满意的性能后,可以将其用于实际应用中,对新的未标记数据点进行分类预测。

代码实现-以逻辑回归为例

import numpy as np
from sklearn.model_selection import train_test_split
from sklearn.preprocessing import StandardScaler
from sklearn.linear_model import LogisticRegression
from sklearn.metrics import accuracy_score, classification_report# 生成示例数据
np.random.seed(42)
X = np.random.rand(100, 2)  # 特征矩阵,每行表示一个数据点,每列表示一个特征
y = (X[:, 0] + X[:, 1] > 1).astype(int)  # 标签,根据特征之和是否大于1进行分类# 数据集划分为训练集和测试集
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)# 特征标准化
scaler = StandardScaler()
X_train_scaled = scaler.fit_transform(X_train)
X_test_scaled = scaler.transform(X_test)# 训练逻辑回归模型
model = LogisticRegression()
model.fit(X_train_scaled, y_train)# 在测试集上进行预测
y_pred = model.predict(X_test_scaled)# 评估模型性能
accuracy = accuracy_score(y_test, y_pred)
classification_rep = classification_report(y_test, y_pred)print(f"Accuracy: {accuracy:.2f}")
print("Classification Report:")
print(classification_rep)

相关文章:

神经网络基础-神经网络补充概念-01-二分分类

概念 二分分类是一种常见的机器学习任务,其目标是将一组数据点分成两个不同的类别。在二分分类中,每个数据点都有一个与之关联的标签,通常是“正类”或“负类”。算法的任务是根据数据点的特征来学习一个模型,以便能够准确地将新…...

Linux16(1) 线程同步

目录 1、概念 2、线程的实现: 3、线程同步: 4、使用信号量: 5、使用信号量实现进程同步: 6、使用互斥锁 7、使用互斥锁实现线程同步 8、读写锁 9、使用读写锁 10、使用读写锁实现进程同步 1、概念 线程:进程…...

深入探讨lowess算法:纯C++实现与局部加权多项式回归的数据平滑技术

引言 在统计学和数据科学中,有时我们面对的数据是嘈杂的、充满噪声的。为了更好地揭示数据的潜在趋势和结构,数据平滑技术成为了一个重要工具。lowess或称为局部加权多项式回归是其中的一种流行方法,它对每一个点给予一个权重,根…...

Sui安全篇|详解零知识证明 (ZKP) Groth16的可塑性

Sui Move允许用户使用Groth16进行高效验证任何非确定性多项式时间(Non-deterministic Polynomial time ,NP)状态。Groth16是一种高效且广泛使用的零知识简洁非交互知识证明(Zero-Knowledge Succinct Non-interactive Argument of …...

记录--webpack和vite原理

这里给大家分享我在网上总结出来的一些知识,希望对大家有所帮助 前言 每次用vite创建项目秒建好,前几天用vue-cli创建了一个项目,足足等了我一分钟,那为什么用 vite 比 webpack 要快呢,这篇文章带你梳理清楚它们的原理…...

Windows系统中使用bat脚本启动git bash 并运行指定命令 - 懒人一键git更新

目标 双击"autoGitPull.bat",自动打开git bash,并cd到项目,逐个git pull,保留git bash窗口展示进度。 脚本 start "" "D:\Program Files\Git\git-bash.exe" -c "echo autoGitPull &&…...

elementui form组件出现英文提示

今天让解决一个bug,是表单组件提示词会出现英文。 问题情景如下: 有时会出现中文,有时会出现英文。 解决方法: 经查看,代码采用的是elementui的form组件,在el-form-item中使用了required属性,同…...

使用windows Api简单验证ISO9660文件格式,以及装载和卸载镜像文件

使用IIsoImageManager接口简单验证ISO镜像文件正确性,使用AttachVirtualDisk装载ISO镜像文件,和使用DetachVirtualDisk卸载,(只支持windows 8及以上系统) 导读 IIsoImageManager 验证ISO文件正确性AttachVirtualDisk 装载镜像文件DetachVirtualDisk 卸载镜像文件其他相关函…...

iPhone 15受益:骁龙8 Gen 3可能缺席部分安卓旗舰机

明年一批领先的安卓手机的性能可能与今年的机型非常相似。硅成本的上涨可能是原因。 你可以想象,2024年许多最好的手机都会在Snapdragon 8 Gen 3上运行,这是高通公司针对移动设备的顶级芯片系统的更新,尚未宣布。然而,来自中国的…...

理解持续测试,才算理解DevOps

软件产品的成功与否,在很大程度上取决于对市场需求的及时把控,采用DevOps可以加快产品交付速度,改善用户体验,从而有助于保持领先于竞争对手的优势。 作为敏捷开发方法论的一种扩展,DevOps强调开发、测试和运维不同团…...

使用OpenCV与深度学习从视频和图像中精准识别人脸: Python实践指南

第一部分: 引言与背景 人脸识别已经成为了当代技术领域中最热门和广泛应用的话题之一。从智能手机的解锁功能到机场的安全检查,人脸识别技术无处不在。在这篇文章中,我们将使用Python中的OpenCV库和深度学习模型,深入探讨如何从视频和图像中…...

面试之快速学习C++11-完美转发,nullptr, shared_ptr,unique_ptr,weak_ptr,shared_from_this

完美转发及其实现 函数模版可以将自己的参数完美地转发给内部调用的其他函数。所谓完美,即不仅能准确地转发参数的值,还能保证被转发参数的左右值属性不变引用折叠:如果任一引用为左值引用,则结果为左值引用,否则为右…...

android resoure资源图片颜色值错乱

最近androidstudio开发,添加一些颜色值或者drawable资源文件时,运行app,颜色值或者图片对应不上,暂时找不到原因,望告知。 暂时解决方法:...

leetcode第 357/358 场周赛

2817. 限制条件下元素之间的最小绝对差 可能别人有更好的解法,我这写法是不断往线段树中插入数值,每次先插入nums[i-x],然后搜索(1到i)中的最大值和(i到max)中的最小值去更新ans。 class Solution { public:struct node{int mx,…...

Jmeter 分布式性能测试避坑指南

在做后端服务器性能测试中,我们会经常听到分布式。那你,是否了解分布式呢?今天,我们就来给大家讲讲,在企业实战中,如何使用分布式进行性能测试,实战过程中,又有哪些地方要特别注意&a…...

基于SpringCloud的会议室预约系统Java基于微服务的会议室报修系统【源码+lw】

💕💕作者:计算机源码社 💕💕个人简介:本人七年开发经验,擅长Java、微信小程序、Python、Android、大数据等,大家有这一块的问题可以一起交流! 💕&#x1f495…...

idea设置忽略大小写

1.点击file 2.点击settings 3.点击Editor选项 4.点击general选项 5.点击code completion 6.点击左上角match case...

re学习(35)攻防世界-no-strings-attached(动调)

参考文章:re学习笔记(28)攻防世界-re-no-strings-attached_Forgo7ten的博客-CSDN博客 攻防世界逆向入门题之no-strings-attached_攻防世界 no-strings-attached_沐一 林的博客-CSDN博客 本人题解: 扔入Exepeinfo中查壳和其他信息…...

STM32 F103C8T6学习笔记8:0.96寸单色OLED显示屏显示字符

使用STM32F103 C8T6 驱动0.96寸单色OLED显示屏: OLED显示屏的驱动,在设计开发中OLED显示屏十分常见,因此今日学习一下。一篇文章从程序到显示都讲通。 文章提供源码、原理解释、测试工程下载,测试效果图展示。 目录 OLED驱动原理—IIC通信…...

vscode的配置和使用

1.侧边栏调整大小 放大:View -> Appearance -> Zoom in(快捷键Ctrl ) 缩小:View -> Appearance -> Zoom out(快捷键Ctrl -) 侧边栏字体调整到合适大小后,可以按下一步调整代码区…...

椭圆曲线密码学(ECC)

一、ECC算法概述 椭圆曲线密码学(Elliptic Curve Cryptography)是基于椭圆曲线数学理论的公钥密码系统,由Neal Koblitz和Victor Miller在1985年独立提出。相比RSA,ECC在相同安全强度下密钥更短(256位ECC ≈ 3072位RSA…...

【Linux】C语言执行shell指令

在C语言中执行Shell指令 在C语言中&#xff0c;有几种方法可以执行Shell指令&#xff1a; 1. 使用system()函数 这是最简单的方法&#xff0c;包含在stdlib.h头文件中&#xff1a; #include <stdlib.h>int main() {system("ls -l"); // 执行ls -l命令retu…...

理解 MCP 工作流:使用 Ollama 和 LangChain 构建本地 MCP 客户端

&#x1f31f; 什么是 MCP&#xff1f; 模型控制协议 (MCP) 是一种创新的协议&#xff0c;旨在无缝连接 AI 模型与应用程序。 MCP 是一个开源协议&#xff0c;它标准化了我们的 LLM 应用程序连接所需工具和数据源并与之协作的方式。 可以把它想象成你的 AI 模型 和想要使用它…...

转转集团旗下首家二手多品类循环仓店“超级转转”开业

6月9日&#xff0c;国内领先的循环经济企业转转集团旗下首家二手多品类循环仓店“超级转转”正式开业。 转转集团创始人兼CEO黄炜、转转循环时尚发起人朱珠、转转集团COO兼红布林CEO胡伟琨、王府井集团副总裁祝捷等出席了开业剪彩仪式。 据「TMT星球」了解&#xff0c;“超级…...

使用van-uploader 的UI组件,结合vue2如何实现图片上传组件的封装

以下是基于 vant-ui&#xff08;适配 Vue2 版本 &#xff09;实现截图中照片上传预览、删除功能&#xff0c;并封装成可复用组件的完整代码&#xff0c;包含样式和逻辑实现&#xff0c;可直接在 Vue2 项目中使用&#xff1a; 1. 封装的图片上传组件 ImageUploader.vue <te…...

OpenLayers 分屏对比(地图联动)

注&#xff1a;当前使用的是 ol 5.3.0 版本&#xff0c;天地图使用的key请到天地图官网申请&#xff0c;并替换为自己的key 地图分屏对比在WebGIS开发中是很常见的功能&#xff0c;和卷帘图层不一样的是&#xff0c;分屏对比是在各个地图中添加相同或者不同的图层进行对比查看。…...

LLMs 系列实操科普(1)

写在前面&#xff1a; 本期内容我们继续 Andrej Karpathy 的《How I use LLMs》讲座内容&#xff0c;原视频时长 ~130 分钟&#xff0c;以实操演示主流的一些 LLMs 的使用&#xff0c;由于涉及到实操&#xff0c;实际上并不适合以文字整理&#xff0c;但还是决定尽量整理一份笔…...

华为OD机考-机房布局

import java.util.*;public class DemoTest5 {public static void main(String[] args) {Scanner in new Scanner(System.in);// 注意 hasNext 和 hasNextLine 的区别while (in.hasNextLine()) { // 注意 while 处理多个 caseSystem.out.println(solve(in.nextLine()));}}priv…...

FFmpeg:Windows系统小白安装及其使用

一、安装 1.访问官网 Download FFmpeg 2.点击版本目录 3.选择版本点击安装 注意这里选择的是【release buids】&#xff0c;注意左上角标题 例如我安装在目录 F:\FFmpeg 4.解压 5.添加环境变量 把你解压后的bin目录&#xff08;即exe所在文件夹&#xff09;加入系统变量…...

安卓基础(Java 和 Gradle 版本)

1. 设置项目的 JDK 版本 方法1&#xff1a;通过 Project Structure File → Project Structure... (或按 CtrlAltShiftS) 左侧选择 SDK Location 在 Gradle Settings 部分&#xff0c;设置 Gradle JDK 方法2&#xff1a;通过 Settings File → Settings... (或 CtrlAltS)…...