当前位置: 首页 > news >正文

大数据课程K2——Spark的RDD弹性分布式数据集

文章作者邮箱:yugongshiye@sina.cn              地址:广东惠州

 ▲ 本章节目的

⚪ 了解Spark的RDD结构;

⚪ 掌握Spark的RDD操作方法;

⚪ 掌握Spark的RDD常用变换方法、常用执行方法;

一、Spark最核心的数据结构——RDD弹性分布式数据集

1. 概述

初学Spark时,把RDD看做是一个集合类型(类似于Array或List),用于存储数据和操作数据,但RDD和普通集合的区别:

1. RDD有分区机制,可以分布式,并行的处理同一个RDD数据集,从而极大提高处理效率。分区数量由程序员自己定。

2. RDD由容错机制。即数据丢失后,可以进行恢复。

2. 创建RDD方法

RDD就是带有分区的集合类型

弹性分布式数据集(RDD),特点是可以并行操作,并且是容错的。有两种方法可以创建RDD:

1. 执行Transform操作(变换操作)。即将一个普通集合(Array或List)转变为一个RDD。

例如:val r1 = sc.parallelize(a1,2)

或 val r1 = sc.makeRDD(List(1,2,3,4),2)

查看分区数量:r1.partitions.size。

查看分区数据:r1.glom.collect。

查看RDD整体数据:r1.collect。

2. 读取外部存储系统的数据集,如HDFS,HBase,或任何与Hadoop有关的数据源。

读取Linux本地文件:val r4 = sc.textFile("file:home/1.txt",2)

读取hds文件:val r5 = sc.textFile("hdfs://hadoop01:9000/1.txt",2)

3. RDD入门示例

案例一:

并行化集合可以通过调用 Spark Context 的并行化方法被创建,这个方法是在驱动程序(Scala-Seq)中的现有集合上的。集合里的参数会被拷贝到可以并行执行的分布式数据集里。如下例子就是如何创建一个包含了 1 到 5 的并行化集合。例如:

val data = Array(1, 2, 3, 4, 5)               

val r1 = sc.parallelize(data)         

val r2 = sc.parallelize(data,2)      

你可以这样理解RDD:它是spark提供的一个特殊集合类。诸如普通的集合类型,如传统的Array:(1,2,3,4,5)是一个整体,但转换成RDD后,我们可以对数据进行Partition(分区)处理,这样做的目的就是为了分布式。

你可以让这个RDD有两个分区,那么有可能是这个形式:RDD(1,2) (3,4)。

这样设计的目的在于:可以进行分布式运算。

注:创建RDD的方式有多种,比如案例一中是基于一个基本的集合类型(Array)转换而来,像parallelize这样的方法还有很多,之后就会学到。此外,我们也可以在读取数据集时就创建RDD。

案例二:

Spark能够从任何基于Hadoop的存储资源,创建分布式数据集。包括本地文件系统、HDFS、Cassandra、HBase、Amazon S3等等。Spark支持TEXT文件格式、SequenceFiles文件格式和其他Hadoop的输入文件格式。

RDD的TEXT文件能够通过SparkContext的方法创建。这个方法获取一个文件的URI路径(可以是本地路径、或者是hdfs://, s3n://等),然后当作一条数据集读取其中内容。例如:

val distFile = sc.textFile("data.txt")

4. 查看RDD

scala>rdd.collect

收集rdd中的数据组成Array返回,此方法将会把分布式存储的rdd中的数据集中到一台机器中组建Array。

在生产环境下一定要慎用这个方法,容易内存溢出。

查看RDD的分区数量:

scala>rdd.partitions.size

查看RDD每个分区的元素:

scala>rdd.glom.collect

此方法会将每个分区的元素以Array形式返回。

5. 分区概念

在下图所示, 一个RDD有item1~item25个数据,共5个分区,分别在3台机器上进行处理。

此外,spark并没有原生的提供rdd的分区查看工具我们可以自己来写一个。

案例三:

import org.apache.spark.rdd.RDD

import scala.reflect.ClassTag

object su {

def debug[T: ClassTag](rdd: RDD[T]) = {

rdd.mapPartitionsWithIndex((i: Int, iter: Iterator[T]) => {

val m = scala.collection.mutable.Map[Int, List[T]]()

var list = List[T]()

while (iter.hasNext) {

list = list :+ iter.next

}

m(i) = list

m.iterator

}).collect().foreach((x: Tuple2[Int, List[T]]) => {

val i = x._1

println(s"partition:[$i]")

x._2.foreach { println }

})

}

}

 二、RDD的操作

1. 概述

对于RDD的操作,总的来分有三种:

1. Transformation变化操作,特点是都是懒操作,调用后并不是马上执行,比如典型的textFile方法。此外,每当调用一次变化操作(懒操作),就会产生一个新的RDD。

2. Action执行操作,特点是会触发执行。

3. Controller控制操作。

 

 

 

 

 2. 常用的变化方法(懒方法):

TransformationMeaning

map(func)

Return a new distributed dataset formed by passing each element of the source through a function func.

返回一个新的分布式数据集,通过函数应用于RDD每一个元素,该方法的参数是一个函数

案例:

map 将函数应用到rdd的每个元素中

val rdd = sc.makeRDD(List(1,3,5,7,9)

相关文章:

大数据课程K2——Spark的RDD弹性分布式数据集

文章作者邮箱:yugongshiye@sina.cn 地址:广东惠州 ▲ 本章节目的 ⚪ 了解Spark的RDD结构; ⚪ 掌握Spark的RDD操作方法; ⚪ 掌握Spark的RDD常用变换方法、常用执行方法; 一、Spark最核心的数据结构——RDD弹性分布式数据集 1. 概述 初学Spark时,把RDD看…...

Seaborn数据可视化(一)

目录 1.seaborn简介 2.Seaborn绘图风格设置 21.参数说明: 2.2 示例: 1.seaborn简介 Seaborn是一个用于数据可视化的Python库,它是建立在Matplotlib之上的高级绘图库。Seaborn的目标是使绘图任务变得简单,同时产生美观且具有信…...

Sentinel规则持久化

首先 Sentinel 控制台通过 API 将规则推送至客户端并更新到内存中,接着注册的写数据源会将新的规则保存到本地的文件中。 示例代码: 1.编写处理类 //规则持久化 public class FilePersistence implements InitFunc {Value("spring.application:n…...

Transformer 相关模型的参数量计算

如何计算Transformer 相关模型的参数量呢? 先回忆一下Transformer模型论文《Attention is all your need》中的两个图。 设Transformer模型的层数为N,每个Transformer层主要由self-attention 和 Feed Forward组成。设self-attention模块的head个数为 …...

企业信息化过程----应用管理平台的构建过程

1.信息化的概念 信息化是一个过程,与工业化、现代化一样,是一个动态变化的过程。信息化已现代通信,网络、数据库技术为基础,将所有研究对象各个要素汇总至数据库,供特定人群生活、工作、学习、辅助决策等,…...

揭秘程序员的鄙视链,你在哪一层?看完我想哭

虽然不同的编程语言都有其优缺点,而且程序员之间的技能和能力更加重要,但是有些程序员可能会因为使用不同的编程语言而产生鄙视链。 以下是一些可能存在的不同编程语言程序员之间的鄙视链: 低级语言程序员鄙视高级语言程序员:使用…...

在docker下进行mysql的主从复制

搭建步骤 1、拉取镜像 docker pull mysql:latest2、查看镜像 docker images3、创建启动容器 Master docker run -p 3306:3306 --name mysql-master -e MYSQL_ROOT_PASSWORD123456 -d mysql:latestSlave docker run -p 3307:3306 --name mysql-slave -e MYSQL_ROOT_PASSWO…...

【机器学习】处理不平衡的数据集

一、介绍 假设您在一家给定的公司工作,并要求您创建一个模型,该模型根据您可以使用的各种测量来预测产品是否有缺陷。您决定使用自己喜欢的分类器,根据数据对其进行训练,瞧:您将获得96.2%的准确率! …...

JVM前世今生之JVM内存模型

JVM内存模型所指的是JVM运行时区域,该区域分为两大块 线程共享区域 堆内存、方法区,即所有线程都能访问该区域,随着虚拟机和GC创建和销毁 线程独占区域 虚拟机栈、本地方法栈、程序计数器,即每个线程都有自己独立的区域&#…...

redis事务对比Lua脚本区别是什么

redis官方对于lua脚本的解释:Redis使用同一个Lua解释器来执行所有命令,同时,Redis保证以一种原子性的方式来执行脚本:当lua脚本在执行的时候,不会有其他脚本和命令同时执行,这种语义类似于 MULTI/EXEC。从别…...

Java“牵手”根据店铺ID获取1688店铺所有商品数据方法,1688API实现批量店铺商品数据抓取示例

1688商城是一个网上购物平台,售卖各类商品,包括服装、鞋类、家居用品、美妆产品、电子产品等。要获取1688整店所有商品详情页面评价内容数据,您可以通过开放平台的接口或者直接访问1688商城的网页来获取店铺所有商品详情信息的数据。以下是两…...

linux-shell脚本收集

创建同步脚本xsync mkdir -p /home/hadoop/bin && cd /home/hadoop/bin vim xsync#!/bin/bash#1. 判断参数个数 if [ $# -lt 1 ] thenecho Not Arguementexit; fi#2. 遍历集群所有机器 for host in node1 node2 node3 doecho $host #3. 遍历所有目录,挨…...

使用 MBean 和 日志查看 Tomcat 线程池核心属性数据

文章目录 CustomTomcatThreadPoolMBeanCustomTomcatThreadPool CustomTomcatThreadPoolMBean com.qww.config;public interface CustomTomcatThreadPoolMBean {String getStatus(); }CustomTomcatThreadPool package com.qww.config;import com.alibaba.fastjson.JSON; impor…...

Visual Studio 2019源码编译cpu版本onnxruntime

1.下载onnxruntime源码 源码地址:gitee 》https://gitee.com/mirrors/onnx-runtime github 》https://github.com/microsoft/onnxruntime git clone --recursive https://gitee.com/mirrors/onnx-runtime 2.安装anaconda并配置python环境 安装anaconda时记得勾选默…...

Go和Java实现模板模式

Go和Java实现模板模式 下面通过一个游戏的例子来说明模板模式的使用。 1、模板模式 在模板模式中,一个抽象类公开定义了执行它的方法的方式/模板。它的子类可以按需要重写方法实现,但调用将 以抽象类中定义的方式进行。这种类型的设计模式属于行为型…...

angular:quill align的坑

上一行设置了align为center,换行后下一个会继承上一行的格式,我想使用Quill.formatLine(newLineIndex, 0, ‘align’, left)来左对齐,发现始终不能生效。 参看quill.js源码,发现align没有left的配置 var config {scope: _parch…...

设计模式篇---抽象工厂(包含优化)

文章目录 概念结构实例优化 概念 抽象工厂:提供一个创建一系列相关或相互依赖对象的接口,而无须指定它们具体的类。 工厂方法是有一个类型的产品,也就是只有一个产品的抽象类或接口,而抽象工厂相对于工厂方法来说,是有…...

Azure创建可用性集

什么是可用性集 在Azure中,可用性集(Availability Set)是一种用于提高虚拟机(VM)可用性和可靠性的功能。它通过将虚拟机分布在不同的物理硬件和故障域中来提供高可用性。每个故障域都是一个独立的电力和网络故障区域&…...

SpringBoot中优雅的实现隐私数据脱敏(提供Gitee源码)

前言:在实际项目开发中,可能会对一些用户的隐私信息进行脱敏操作,传统的方式很多都是用replace方法进行手动替换,这样会由很多冗余的代码并且后续也不好维护,本期就讲解一下如何在SpringBoot中优雅的通过序列化的方式去…...

Elasticsearch集群shard过多后导致的性能问题分析

1.问题现象 上午上班以后发现ES日志集群状态不正确,集群频繁地重新发起选主操作。对外不能正常提供数据查询服务,相关日志数据入库也产生较大延时 2.问题原因 相关日志 查看ES集群日志如下: 00:00:51开始集群各个节点与当时的master节点…...

1688商品列表API与其他数据源的对接思路

将1688商品列表API与其他数据源对接时,需结合业务场景设计数据流转链路,重点关注数据格式兼容性、接口调用频率控制及数据一致性维护。以下是具体对接思路及关键技术点: 一、核心对接场景与目标 商品数据同步 场景:将1688商品信息…...

多模态商品数据接口:融合图像、语音与文字的下一代商品详情体验

一、多模态商品数据接口的技术架构 (一)多模态数据融合引擎 跨模态语义对齐 通过Transformer架构实现图像、语音、文字的语义关联。例如,当用户上传一张“蓝色连衣裙”的图片时,接口可自动提取图像中的颜色(RGB值&…...

土地利用/土地覆盖遥感解译与基于CLUE模型未来变化情景预测;从基础到高级,涵盖ArcGIS数据处理、ENVI遥感解译与CLUE模型情景模拟等

🔍 土地利用/土地覆盖数据是生态、环境和气象等诸多领域模型的关键输入参数。通过遥感影像解译技术,可以精准获取历史或当前任何一个区域的土地利用/土地覆盖情况。这些数据不仅能够用于评估区域生态环境的变化趋势,还能有效评价重大生态工程…...

【论文阅读28】-CNN-BiLSTM-Attention-(2024)

本文把滑坡位移序列拆开、筛优质因子,再用 CNN-BiLSTM-Attention 来动态预测每个子序列,最后重构出总位移,预测效果超越传统模型。 文章目录 1 引言2 方法2.1 位移时间序列加性模型2.2 变分模态分解 (VMD) 具体步骤2.3.1 样本熵(S…...

在WSL2的Ubuntu镜像中安装Docker

Docker官网链接: https://docs.docker.com/engine/install/ubuntu/ 1、运行以下命令卸载所有冲突的软件包: for pkg in docker.io docker-doc docker-compose docker-compose-v2 podman-docker containerd runc; do sudo apt-get remove $pkg; done2、设置Docker…...

JAVA后端开发——多租户

数据隔离是多租户系统中的核心概念,确保一个租户(在这个系统中可能是一个公司或一个独立的客户)的数据对其他租户是不可见的。在 RuoYi 框架(您当前项目所使用的基础框架)中,这通常是通过在数据表中增加一个…...

【Linux】Linux安装并配置RabbitMQ

目录 1. 安装 Erlang 2. 安装 RabbitMQ 2.1.添加 RabbitMQ 仓库 2.2.安装 RabbitMQ 3.配置 3.1.启动和管理服务 4. 访问管理界面 5.安装问题 6.修改密码 7.修改端口 7.1.找到文件 7.2.修改文件 1. 安装 Erlang 由于 RabbitMQ 是用 Erlang 编写的,需要先安…...

在鸿蒙HarmonyOS 5中使用DevEco Studio实现指南针功能

指南针功能是许多位置服务应用的基础功能之一。下面我将详细介绍如何在HarmonyOS 5中使用DevEco Studio实现指南针功能。 1. 开发环境准备 确保已安装DevEco Studio 3.1或更高版本确保项目使用的是HarmonyOS 5.0 SDK在项目的module.json5中配置必要的权限 2. 权限配置 在mo…...

深入理解 C++ 左值右值、std::move 与函数重载中的参数传递

在 C 编程中,左值和右值的概念以及std::move的使用,常常让开发者感到困惑。特别是在函数重载场景下,如何合理利用这些特性来优化代码性能、确保语义正确,更是一个值得深入探讨的话题。 在开始之前,先提出几个问题&…...

结合PDE反应扩散方程与物理信息神经网络(PINN)进行稀疏数据预测的技术方案

以下是一个结合PDE反应扩散方程与物理信息神经网络(PINN)进行稀疏数据预测的技术方案,包含完整数学推导、PyTorch/TensorFlow双框架实现代码及对比实验分析。 基于PINN的反应扩散方程稀疏数据预测与大规模数据泛化能力研究 1. 问题定义与数学模型 1.1 反应扩散方程 考虑标…...