【深度学习 | 数据可视化】 视觉展示分类边界: Perceptron模型可视化iris数据集的决策边界

🤵♂️ 个人主页: @AI_magician
📡主页地址: 作者简介:CSDN内容合伙人,全栈领域优质创作者。
👨💻景愿:旨在于能和更多的热爱计算机的伙伴一起成长!!🐱🏍
🙋♂️声明:本人目前大学就读于大二,研究兴趣方向人工智能&硬件(虽然硬件还没开始玩,但一直很感兴趣!希望大佬带带)

该文章收录专栏
[✨— 《深入解析机器学习:从原理到应用的全面指南》 —✨]
决策边界可视化
Perceptron
在训练好高精度的模型,我们可以通过有效的可视化直观看到分类效果,相比于混淆矩阵等分类指标更加直观。如下示例就可以看出iris数据集的Sepal (花萼)相比 Petal (花瓣)更难分类
import matplotlib.pyplot as plt
from sklearn.datasets import load_iris
from sklearn.model_selection import train_test_split
from sklearn.linear_model import Perceptron
# 加载鸢尾花数据集
data = load_iris()
X_train, X_test, y_train, y_test = train_test_split(data.data[:,2:], data.target, test_size=0.2)# 创建并训练感知器模型
perceptron = Perceptron()
perceptron.fit(X_train, y_train)# 绘制散点图(每个类别用不同颜色表示)
plt.scatter(X_train[:, 0], X_train[:, 1], c=y_train) # just draw the length and width of sepal ,
# and the c paremeter get the array will draw different color in different digital
plt.xlabel('Petal Length')
plt.ylabel('Petal Width')# 添加决策边界到图中
x_min, x_max = X_train[:, 0].min() - 1, X_train[:, 0].max() + 1
y_min, y_max = X_train[:, 1].min() - 1, X_train[:, 1].max() + 1xx, yy = np.meshgrid(np.arange(x_min, x_max), np.arange(y_min,y_max)) # depend on the two x and y lenth decide the array shape return the x and y axis np-array with interval 1
# both have the same shape
# print(np.arange(x_min, x_max))
# print(np.arange(y_min,y_max))
# print(xx)
# print(xx.ravel())
# print(yy)
# print(yy.ravel())
Z = perceptron.predict(np.c_[xx.ravel(), yy.ravel()]) # draw the decision boundary (predict the per coordinate pair )
# print(np.c_[xx.ravel(), yy.ravel()])
Z = Z.reshape(xx.shape) # replace to the every grid
print(Z)
plt.contourf(xx ,yy ,Z,alpha=0.3)
plt.show()
accuary = sum(perceptron.predict(X_test) == y_test)/len(y_test)
print(accuary)
![[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-vtt9903J-1692410092565)(data visualization.assets/image-20230819093519419.png)]](https://img-blog.csdnimg.cn/6b32df59148c445295a7ad38259456df.png)
![[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-NP4qVAMU-1692410092566)(data visualization.assets/image-20230819093953006.png)]](https://img-blog.csdnimg.cn/073e7500801d4f6b8ad21a06790c3d6d.png)
对应的Prediction grid (可以看到反过来就是绘制等高线对应的图片):
[[0 1 1 1 1 1 1 1][0 0 1 1 1 1 1 1][0 0 0 1 1 1 1 1][2 2 2 2 2 2 2 1][2 2 2 2 2 2 2 2]]
详解使用函数:
np.meshgrid()
np.meshgrid()函数用于生成一个二维网格,它以两个一维数组作为参数,分别表示 x 轴和 y 轴上的坐标点。该函数返回两个二维数组,这些数组中的每个元素都代表了在坐标平面上某一点的 x 和 y 坐标。
让我们来详细解释一下np.meshgrid()函数的具体用法:
xx, yy = np.meshgrid(np.arange(x_min, x_max), np.arange(y_min,y_max))
-
np.arange(x_min, x_max):这是一个 NumPy 函数,用于创建一个从x_min到x_max - 1的连续整数序列。它将作为参数传递给np.meshgrid()函数,并指定了在 x 轴方向上生成网格点所需的范围。 -
np.arange(y_min,y_max):类似地同上 -
xx, yy = np.meshgrid(...):通过调用np.meshgrid(np.arange(x_min, x_max), np.arange(y_min,y_max))可以得到 xx 和 yy 这两个变量。其中 xx 是一个与 y 方向长度相同、横轴值变化而纵轴不变(即 y 方向不变)的二维数组;yy 是一个与 x 方向长度相同、纵轴值变化而横轴不变(即 x 方向不变)的二维数组。
这个函数对于在整个坐标空间上进行预测和可视化非常有用,因为它生成了一个包含所有可能组合的坐标点网格。
np.ravel() & np.c_
np.ravel()函数用于将多维数组展平为一维数组。它会按照 C 风格(行优先)的顺序来展开数组。
np.c_()用于按列连接两个或多个数组。它可以将一维数组沿着列方向进行拼接,生成一个新的二维数组。
plt.contourf()
plt.contourf()用于绘制等高线填充图。它可以根据数据的值来为不同区域着色,并在图表上显示出这些颜色区域之间的边界。
让我们详细解释一下plt.contourf()函数的具体用法:
plt.contourf(X, Y, Z)
-
X:表示 x 坐标点的二维数组或网格矩阵。 -
Y:表示 y 坐标点的二维数组或网格矩阵。 -
Z:表示对应于(X, Y)网格点位置处某种属性(例如,高度、温度等)的数值。
通过传递以上参数给plt.contourf()函数,我们可以生成一个由等高线填充区域组成的图表。其中每个填充区域都代表了相应坐标点处属性数值所在范围内部分。
此外,您还可以使用其他参数来自定义等高线填充图:
-
levels: 通过设置 levels 参数来指定要显示哪些特定数值范围内部分,默认情况下会自动选择合适数量和范围。 -
colors: 可以使用 colors 参数来指定所使用颜色映射(colormap),也可以直接传递一个颜色列表作为参数进行手动设置。
通过使用plt.contourf()函数,您可以以视觉方式展示二维数据的分布情况,并更好地理解和呈现数据。
总结
总体而言,整个可视化原理也比较清晰明了。大概流程如下:
- 根据对应的数据数组特征的Min和Max确定对应的数据范围(Arrange)
- 根据数据范围通过
meshgrip生成对应表格二维数组(返回每一个点的x和y的值(shape(len(x),len(y))- 对数据进行铺平操作(
np.ravel())和拼接成数组(np.c_)对作为特征数据进行预测网格的每一个点。- 通过
plt.contourf对网格点的每一个预测结果作为其属性画不同颜色等高线实现决策边界的绘制。🎉

🤞到这里,如果还有什么疑问🤞🎩欢迎私信博主问题哦,博主会尽自己能力为你解答疑惑的!🎩🥳如果对你有帮助,你的赞是对博主最大的支持!!🥳
相关文章:
【深度学习 | 数据可视化】 视觉展示分类边界: Perceptron模型可视化iris数据集的决策边界
🤵♂️ 个人主页: AI_magician 📡主页地址: 作者简介:CSDN内容合伙人,全栈领域优质创作者。 👨💻景愿:旨在于能和更多的热爱计算机的伙伴一起成长!!&…...
【计算机视觉】相机基本知识(还在更新)
1.面阵工业相机与线阵工业相机 1.1 基本概念区别 面阵相机则主要采用的连续的、面状扫描光线来实现产品的检测; 线阵相机即利用单束扫描光来进行物体扫描的工作的。 1.2 优缺点 (1)面阵CCD工业相机: 优点:应用面…...
C++ (友元)(类嵌套时,成员函数以及类声明定义的顺序)小demo
#include<iostream> using namespace std; class Building; //1.因为Goodgay类需要声明Building类变量, //所以Building类必须Goodgay类之前声明(前向声明); class GoodGay { public:GoodGay();void visit(); private:Build…...
前端实习第五周周记
前言 每一天做了什么还是要记录一下,不然过两天后就会发现,慢慢遗忘自己的收获与做过的东西。 这周做的是医学检验系统的样本库部分。由于是公司的代码所以不能交代具体,那么久聊一下每天具体做了些什么以及我的一些收获。 周一 周一上午…...
【图论】Floyd算法
一.简介 Floyd算法,也称为Floyd-Warshall算法,是一种用于解决所有节点对最短路径问题的动态规划算法。它可以在有向图或带权图中找到任意两个节点之间的最短路径。 Floyd算法的基本思想是通过中间节点逐步优化路径长度。它使用一个二维数组来存储任意两…...
ceph数据分布
ceph的存储是无主结构,数据分布依赖client来计算,有两个条主要路径。 1、数据到PG 2、PG 到OSD 有两个假设: 第一,pg的数量稳定,可以认为保持不变; 第二, OSD的数量可以增减,OSD的…...
mysql的两张表left join 进行关联后,索引进行优化案例
一 mysql的案例 1.1 不加索引情况 1.表1没加索引 2.表2没加索引 3.查看索引 1.2 添加索引 1.表1添加索引 2.表2添加索引 3.查看...
2018年3月全国计算机等级考试真题(语言二级C)
2018年3月全国计算机等级考试真题(语言二级C) 第1题 设有定义:char s[81];int i0;以下不能将一行带有空格的字符串正确读入的语句或语句组是 A. while((s[i]getchar())!\n);s[i]\0; B. scanf("%s",s); C.…...
java.util.Timer简介以及简单使用示例
一、简介 定时器(Timer)是一个工具类,用于安排任务(java.util.TimerTask)在指定时间后执行或以指定的时间间隔重复执行。它可以用于执行定时任务、定时调度和时间延迟等操作。 定时器(Timer)可以…...
C语言笔试训练【第12天】
文章目录 1、请阅读以下程序,其运行结果是( )2、假设编译器规定 int 和 short 类型长度分别为32位和16位,若有下列C语言语句,则 y 的机器数为( )3、下列程序的输出结果是什么( &…...
外网连接局域网的几种方式?快解析内网穿透安全便利吗?
外网连接局域网是一项网络连接中的关键技术,它能够让远程用户通过互联网访问内部局域网中的资源和服务。外网连接局域网为企业提供了更大的灵活性和便捷性,但也需要严格的安全措施来防止未经授权的访问。 外网连接局域网的几种方式 在将外网连接到局域…...
基于互斥锁的生产者消费者模型
文章目录 生产者消费者 定义代码实现 / 思路完整代码执行逻辑 / 思路 局部具体分析model.ccfunc(消费者线程) 执行结果 生产者消费者 定义 生产者消费者模型 是一种常用的 并发编程模型 ,用于解决多线程或多进程环境下的协作问题。该模型包含…...
USB隔离器电路分析,SA8338矽塔sytatek电机驱动,源特科技VPS8701,开关电源,电源 大师
一、 USB隔离器电路分析 进行usb隔离可以使用USB隔离模块 ADUM3160 ADUM4160 注意:B0505S 最大带载0.16A,副边需要带载能力需要改变方案 比如移动硬盘至少需要0.5A 用充电宝、18650、设计5V1A输出电源 二、 1A隔离电压方案...
TPC-DS 测试是否支持 Glue Data Catalog?
在上一篇文章《在Hive/Spark上执行TPC-DS基准测试 (PARQUET格式)》中,我们详细介绍了具体的操作方法,当时的集群使用的是Hive Metastore,所有操作均可成功执行。当集群启用 Glue Data Catalog 时,在执行add_constraints.sql时会报错: Optimizing table date_dim (1/24).…...
网络编程(8.14)TCP并发服务器模型
作业: 1. 多线程中的newfd,能否修改成全局,不行,为什么? 2. 多线程中分支线程的newfd能否不另存,直接用指针间接访问主线程中的newfd,不行,为什么? 多线程并发服务器模型原代码&…...
认识负载均衡||WEBSHELL
目录 一、负载均衡 1.nginx负载均衡算法 2.nginx反向代理-负载均衡 二、webshell 1.构造不含数字和字母的webshell 2.如何绕过 一、负载均衡 1.nginx负载均衡算法 (1)轮询(默认)每个请求按时间顺序逐一分配到不同的后端服务&…...
Chapter 15: Object-Oriented Programming | Python for Everybody 讲义笔记_En
文章目录 Python for Everybody课程简介Object-oriented programmingManaging larger programsGetting startedUsing objectsStarting with programsSubdividing a problemOur first Python objectClasses as typesObject lifecycleMultiple instancesInheritanceSummaryGlossa…...
模板编程-成员特化
成员特化:类模板特化除了可以对整个类进行特化外,可以只针对某部分成员函数进行特化 全类特化和成员特化都属于全局特化 #define _CRT_SECURE_NO_WARNINGS #include <iostream> #include <cstring>template<typename T> class CMath { public:CMath(const…...
信安通用基础知识
文章目录 密码学经典误区PGP优良保密协议信安经典其它安全手段XSS与CSRF cross site request forgeryCSRF的利用逻辑CSRF示例CSRF防范检查Referer字段添加校验token XSS cross site scripting common weakness enumeration常见密码api误用(摘自毕设参考文献…...
网上购物系统的设计与实现/在线商城/基于spring boot的电商平台/基于Java的商品销售系统
摘 要 本毕业设计的内容是设计并且实现一个基于Springboot的网上购物系统。它是在Windows下,以MYSQL为数据库开发平台,Tomcat网络信息服务作为应用服务器。网上购物系统的功能已基本实现,主要包括用户管理、数码分类管理、数码产品管理、服…...
Qwen3-Embedding-0.6B深度解析:多语言语义检索的轻量级利器
第一章 引言:语义表示的新时代挑战与Qwen3的破局之路 1.1 文本嵌入的核心价值与技术演进 在人工智能领域,文本嵌入技术如同连接自然语言与机器理解的“神经突触”——它将人类语言转化为计算机可计算的语义向量,支撑着搜索引擎、推荐系统、…...
Spring AI与Spring Modulith核心技术解析
Spring AI核心架构解析 Spring AI(https://spring.io/projects/spring-ai)作为Spring生态中的AI集成框架,其核心设计理念是通过模块化架构降低AI应用的开发复杂度。与Python生态中的LangChain/LlamaIndex等工具类似,但特别为多语…...
智能分布式爬虫的数据处理流水线优化:基于深度强化学习的数据质量控制
在数字化浪潮席卷全球的今天,数据已成为企业和研究机构的核心资产。智能分布式爬虫作为高效的数据采集工具,在大规模数据获取中发挥着关键作用。然而,传统的数据处理流水线在面对复杂多变的网络环境和海量异构数据时,常出现数据质…...
Fabric V2.5 通用溯源系统——增加图片上传与下载功能
fabric-trace项目在发布一年后,部署量已突破1000次,为支持更多场景,现新增支持图片信息上链,本文对图片上传、下载功能代码进行梳理,包含智能合约、后端、前端部分。 一、智能合约修改 为了增加图片信息上链溯源,需要对底层数据结构进行修改,在此对智能合约中的农产品数…...
Git 3天2K星标:Datawhale 的 Happy-LLM 项目介绍(附教程)
引言 在人工智能飞速发展的今天,大语言模型(Large Language Models, LLMs)已成为技术领域的焦点。从智能写作到代码生成,LLM 的应用场景不断扩展,深刻改变了我们的工作和生活方式。然而,理解这些模型的内部…...
(一)单例模式
一、前言 单例模式属于六大创建型模式,即在软件设计过程中,主要关注创建对象的结果,并不关心创建对象的过程及细节。创建型设计模式将类对象的实例化过程进行抽象化接口设计,从而隐藏了类对象的实例是如何被创建的,封装了软件系统使用的具体对象类型。 六大创建型模式包括…...
AI语音助手的Python实现
引言 语音助手(如小爱同学、Siri)通过语音识别、自然语言处理(NLP)和语音合成技术,为用户提供直观、高效的交互体验。随着人工智能的普及,Python开发者可以利用开源库和AI模型,快速构建自定义语音助手。本文由浅入深,详细介绍如何使用Python开发AI语音助手,涵盖基础功…...
Kubernetes 网络模型深度解析:Pod IP 与 Service 的负载均衡机制,Service到底是什么?
Pod IP 的本质与特性 Pod IP 的定位 纯端点地址:Pod IP 是分配给 Pod 网络命名空间的真实 IP 地址(如 10.244.1.2)无特殊名称:在 Kubernetes 中,它通常被称为 “Pod IP” 或 “容器 IP”生命周期:与 Pod …...
使用SSE解决获取状态不一致问题
使用SSE解决获取状态不一致问题 1. 问题描述2. SSE介绍2.1 SSE 的工作原理2.2 SSE 的事件格式规范2.3 SSE与其他技术对比2.4 SSE 的优缺点 3. 实战代码 1. 问题描述 目前做的一个功能是上传多个文件,这个上传文件是整体功能的一部分,文件在上传的过程中…...
在鸿蒙HarmonyOS 5中使用DevEco Studio实现指南针功能
指南针功能是许多位置服务应用的基础功能之一。下面我将详细介绍如何在HarmonyOS 5中使用DevEco Studio实现指南针功能。 1. 开发环境准备 确保已安装DevEco Studio 3.1或更高版本确保项目使用的是HarmonyOS 5.0 SDK在项目的module.json5中配置必要的权限 2. 权限配置 在mo…...
