关于Transformer中的位置编码
位置编码 (Positional Encoding)
位置编码是在自然语言处理中,特别是在 Transformer 架构中使用的一个重要概念。Transformer 架构由于其自注意力机制 (Self-Attention Mechanism) 的特性,对序列中的元素没有固有的顺序感知。这意味着,如果不加以处理,Transformer 无法区分序列中的元素的相对位置。为了解决这个问题,位置编码被引入。
位置编码的重要性
位置编码的重要性主要体现在以下几点:
- 序列顺序的感知:在许多任务中,如机器翻译、文本生成等,元素的顺序是非常关键的。位置编码确保 Transformer 可以考虑到这种顺序。
- 增强模型的表达能力:位置编码为模型提供了额外的信息,使其能够更好地理解和生成序列。
- 灵活性:位置编码是可学习的,这意味着模型可以在训练过程中调整它,以更好地适应特定的任务。
- 与自注意力机制的结合:位置编码与自注意力机制结合,使 Transformer 能够考虑到序列中的长距离依赖关系。
图像中的位置编码
在图像处理中,位置编码的引入与自然语言处理中的方法有所不同,但基本的原理是相似的:为模型提供空间位置信息。以下是几种在图像处理中引入位置编码的方法:
1. 二维位置编码
与自然语言处理中的一维位置编码不同,图像通常需要二维的位置编码来表示其宽度和高度。这可以通过为每个像素或区域分配一个二维编码来实现。
2. 绝对位置编码
为图像中的每个像素或区域分配一个固定的编码,表示其在图像中的绝对位置。
3. 相对位置编码
与绝对位置编码不同,相对位置编码表示一个像素或区域与其他像素或区域之间的相对位置关系。
4. 位置嵌入 (Position Embeddings)
这是一种学习位置信息的方法。与位置编码不同,位置嵌入是在模型训练过程中学习的,而不是预先定义的。
5. 卷积操作
卷积神经网络 (CNN) 通过其卷积操作隐式地捕获位置信息。但在某些无卷积的模型结构中,如 Vision Transformer (ViT),需要显式地引入位置编码。
6. 扩展到更高维度
对于视频或3D图像,可以考虑引入三维或更高维度的位置编码。
7. 组合方法
在某些应用中,可能需要同时使用多种方法来捕获位置信息,例如,结合绝对位置编码和相对位置编码。
绝对位置编码
绝对位置编码是为序列中的每个位置分配一个固定的编码,这个编码表示该位置在整个序列中的确切位置。这种编码方式不依赖于其他位置,因此被称为“绝对”。
特点:
- 固定编码:每个位置都有一个预定义的编码,不受其他位置的影响。
- 独立性:绝对位置编码不考虑其他位置,只关注当前位置。
- 常见实现:在 Transformer 模型中,通常使用正弦和余弦函数来生成绝对位置编码。
相对位置编码
相对位置编码不是直接编码每个位置,而是编码两个位置之间的相对距离。例如,对于一个给定的位置,其与其他位置的相对位置编码将表示它们之间的距离或关系。
特点:
- 距离感知:相对位置编码捕获了两个位置之间的距离或关系。
- 动态性:相对于一个固定的参考点,其他位置的编码会发生变化。
- 应用场景:在某些模型中,如 Transformer 的自注意力机制,相对位置编码可以帮助模型捕获长距离的依赖关系。
对比:
- 稳定性:绝对位置编码为每个位置提供了一个稳定的、不变的编码,而相对位置编码则依赖于参考位置。
- 灵活性:相对位置编码可以更灵活地捕获位置之间的关系,而绝对位置编码则更注重每个位置本身。
- 实现复杂性:相对位置编码的实现通常比绝对位置编码更复杂,因为它需要考虑两个位置之间的关系。
绝对位置编码
绝对位置编码在 Transformer 模型中使用正弦和余弦函数来表示每个位置的信息。
公式
对于偶数维度 (i):
P E ( p o s , 2 i ) = sin ( p o s 1000 0 2 i d model ) PE(pos, 2i) = \sin\left(\frac{pos}{10000^{\frac{2i}{d_{\text{model}}}}}\right) PE(pos,2i)=sin(10000dmodel2ipos)
- 对于奇数维度 (i):
P E ( p o s , 2 i + 1 ) = cos ( p o s 1000 0 2 i d model ) PE(pos, 2i+1) = \cos\left(\frac{pos}{10000^{\frac{2i}{d_{\text{model}}}}}\right) PE(pos,2i+1)=cos(10000dmodel2ipos)
其中:
- P E ( p o s , 2 i ) PE(pos, 2i) PE(pos,2i)是位置 p o s pos pos 在维度 i i i的位置编码。
- d model d_{\text{model}} dmodel是模型的维度。
代码分析
代码中的这一部分:
div_term = np.exp(np.arange(0, d_model, 2) * -(np.log(10000.0) / d_model))
实际上是在计算上述公式的除数部分:
div_term = 1000 0 2 i d model \text{div\_term} = 10000^{\frac{2i}{d_{\text{model}}}} div_term=10000dmodel2i
当我们对上述公式取自然对数,我们得到:
log ( div_term ) = 2 i d model log ( 10000 ) \log(\text{div\_term}) = \frac{2i}{d_{\text{model}}} \log(10000) log(div_term)=dmodel2ilog(10000)
这与代码中的形式相匹配,其中 np.exp
是为了从对数形式回到原始的指数形式。
Python 实现
import numpy as np
def get_positional_encoding(seq_len, d_model):position = np.arange(seq_len)[:, np.newaxis]div_term = np.exp(np.arange(0, d_model, 2) * -(np.log(10000.0) / d_model))position_encoding = np.zeros((seq_len, d_model))position_encoding[:, 0::2] = np.sin(position * div_term)position_encoding[:, 1::2] = np.cos(position * div_term)return position_encoding
相对位置编码
相对位置编码主要用于增强 Transformer 中的自注意力机制对位置信息的感知。在原始的 Transformer 模型中,注意力权重是基于查询(Q)、键(K)和值(V)来计算的。当引入相对位置编码时,我们会修改注意力权重的计算方式,使其同时考虑相对位置信息。
使用相对位置编码的简化步骤:
- 计算相对位置编码:首先,使用提供的
relative_positional_encoding
函数计算相对位置编码。 - 计算注意力权重:在计算自注意力的 Q 和 K 的点积时,将相对位置编码添加到结果中。这可以通过将相对位置编码与 Q 的每一行相乘并求和来实现。
- 归一化注意力权重:使用 softmax 函数归一化注意力权重。
- 计算输出:使用归一化的注意力权重与 V 相乘,得到自注意力的输出。
Python 代码示例
import numpy as npclass SelfAttentionWithRelativePosition:def __init__(self, d_model, seq_len):self.d_model = d_modelself.seq_len = seq_lenself.scale = np.sqrt(d_model)# 初始化权重self.WQ = np.random.rand(d_model, d_model)self.WK = np.random.rand(d_model, d_model)self.WV = np.random.rand(d_model, d_model)# 获取相对位置编码self.relative_pos_encoding = self.relative_positional_encoding(seq_len, d_model)def relative_positional_encoding(self, seq_len, d_model):position = np.arange(seq_len)relative_position_matrix = position[:, np.newaxis] - position[np.newaxis, :]relative_position_matrix = np.clip(relative_position_matrix + seq_len, 0, 2 * seq_len - 1)div_term = np.exp(np.arange(0, d_model, 2) * -(np.log(10000.0) / d_model))sinusoid_table = np.zeros((2 * seq_len, d_model))sinusoid_table[:, 0::2] = np.sin(relative_position_matrix * div_term)sinusoid_table[:, 1::2] = np.cos(relative_position_matrix * div_term)return sinusoid_table[relative_position_matrix]def forward(self, Q, K, V):Q = np.matmul(Q, self.WQ)K = np.matmul(K, self.WK)V = np.matmul(V, self.WV)attn_logits = np.matmul(Q, K.T) / self.scaleattn_logits += np.matmul(Q, self.relative_pos_encoding.T)attn_weights = np.exp(attn_logits) / np.sum(np.exp(attn_logits), axis=-1, keepdims=True)output = np.matmul(attn_weights, V)return output# 示例
seq_len = 10
d_model = 512
Q = np.random.rand(1, d_model)
K = np.random.rand(seq_len, d_model)
V = np.random.rand(seq_len, d_model)attention_layer = SelfAttentionWithRelativePosition(d_model, seq_len)
output = attention_layer.forward(Q, K, V)
print(output)
相关文章:
关于Transformer中的位置编码
位置编码 (Positional Encoding) 位置编码是在自然语言处理中,特别是在 Transformer 架构中使用的一个重要概念。Transformer 架构由于其自注意力机制 (Self-Attention Mechanism) 的特性,对序列中的元素没有固有的顺序感知。这意味着,如果不…...
ABAP 期初库存批量导入 demo1
&--------------------------------------------------------------------- *& Report ZMMCP005 &--------------------------------------------------------------------- 作者: Liv完成日期:描述: 期初库存导入需求简要说明&…...
想用 Python 写游戏,都有哪些好用的游戏开发库?
虽然 Python 在网络爬虫、人工智能、数据分析方面有广泛应用,但它并不是一门专门做游戏开发的编程语言,不过对于小型的游戏开发,Python 还是挺香的。下面为大家介绍几个支持 Python 的 2D、3D 游戏开发库,使用它们,你可以设计出很多有意思的小游戏! Cocos2d Cocos2d 是…...

vue3 路由缓存问题
目录 解决问题的思路: 解决问题的方案: 1、给roter-view添加key(破坏复用机制,强制销毁重建) 2、使用beforeRouteUpdate导航钩子 3、使用watch监听路由 vue3路由缓存:当用户从/users/johnny导航到/use…...
如何找到一个数的所有质因数,以及如何快速判断一个数是不是质数
前情介绍 今天遇到一个需求:找到一个数所有的质因数。 初步解决 先定义一个判断质数的函数: def is_Prime(number):i 2count 0while i < number:if number % i 0 :count 1i 1if count > 0:return Falseelse:return True 接着定义一个寻找质…...

西瓜书之神经网络
一,神经元模型 所谓神经网络, 目前用得最广泛的一个定义是“神经网络是由具有适应性的简单单元组成的广泛并行互连的网络,它的组织能够模拟生物神经系统对真实世界物体所做出的交互反应”。 M-P神经元 M-P神经元:接收n个输入(…...

C++进阶 特殊类的设计
本篇博客介绍:介绍几种特殊的类 特殊类的设计 设计一个类不能被拷贝设计一个类 只能在堆上创建对象设计一个类 只能在栈上创造对象设计一个类不能被继承单例模式饿汉模式懒汉模式单例模式对象的释放问题 总结 设计一个类不能被拷贝 我们的拷贝只会发生在两个场景当…...

NLP序列标注问题,样本不均衡怎么解决?
【学而不思则罔,思而不学则殆】 1.问题 NLP序列标注问题,样本不均衡怎么解决? 2.解释 以命名实体识别(NER)为例,这个样本不均衡有两种解释: (1)实体间类别数量不均衡…...
大端和小端
大端和小端 大端(Big Endian)和小端(Little Endian)是两种不同的字节序排列方式,用于解释多字节数据在内存中的存储顺序。 在大端字节序中,高位字节(最高有效位)存储在低位地址&am…...

C++快速回顾(二)
前言 在Android音视频开发中,网上知识点过于零碎,自学起来难度非常大,不过音视频大牛Jhuster提出了《Android 音视频从入门到提高 - 任务列表》,结合我自己的工作学习经历,我准备写一个音视频系列blog。C/C是音视频必…...
【LVS】1、LVS负载均衡群集
1.群集的含义: Cluster、群集、集群 由多台主机构成并作为一个整体,只提供一个访问入口(域名与IP地址);可伸缩 2.集群使用的场景: 高并发 3.企业群集的分类: 根据群集所针对的目标差异&a…...
el-tree 懒加载树
el-tree 懒加载树 添加自定义图标指定叶子节点懒加载 <template><div><el-treeclass"filter-tree":data"treeData":props"defaultProps"ref"tree"lazy:load"loadTree":expand-on-click-node"true"…...

到江西赣州ibm维修服务器之旅-联想X3850 x6黄灯故障
2023年08月15日,一位江西赣州工厂客户通过朋友介绍与冠峰售前工程师取得联系,双方对产品故障前后原因沟通的大致情况如下: 服务器型号:Lenovo system x3850 x6 为用户公司erp仓库服务器 服务器故障:正常使用过程中业…...

VMware 虚拟机三种网络模式详解
文章目录 前言桥接模式(Bridged)桥接模式特点: 仅主机模式 (Host-only)仅主机模式 (Host-only)特点: NAT网络地址转换模式(NAT)网络地址转换模式(NAT 模式)特点: 前言 很多同学在初次接触虚拟机的时候对 VMware 产品的三种网络模式不是很理解,本文就 VMware 的三种网络模式进行…...
ASP.NET指定变量数据类型,速度提高了100倍
ASP.NET指定变量数据类型,速度提高了100倍由自动编程人工智能 发表在专区 10亿次求余数为0的计算: ASP运行速度130秒左右 ASP.NET Dim i, c, max 如果不指定数据类型,运行要120秒左右 Dim i, c, max As Integer 指定数据类型,运…...
PyArmor 一键加密
使用: pyarmor obfuscate main.py 参考:Python代码加密方案_python加密代码_wgr_1009的博客-CSDN博客 一 简介 PyArmor是用于保护Python代码的工具,它可以将Python脚本编译成加密的字节码,以增加代码的保护性。它的主要目的是防…...
redis--持久化
redis持久化 在 Redis 中,持久化是一种将数据从内存写入到磁盘的机制,以便在服务器重启或崩溃时能够恢复数据。Redis 提供了两种主要的持久化方式:RDB(Redis Database Snapshot)和AOF(Append-Only File&am…...
管理外部表
官方文档地址:Managing Tables 关于外部表 Oracle 数据库允许您对外部表中的数据进行只读访问。外部表定义为不驻留在数据库中的表,通过向数据库提供描述外部表的元数据,数据库能够公开外部表中的数据,就好像它是驻留在常规数据…...
数字图像处理-AWB跳变
1、自动白平衡(AWB)算法是相机中常用的图像处理技术,它能够自动调整图像中的白平衡,使得图像中的颜色更加真实、自然。然而,在实际应用中,AWB算法也存在着一些问题,例如AWB跳变(Whit…...

DNNGP、DeepGS 和 DLGWAS模型构成对比
一、DNNGP DNNGP 是基于深度卷积神经网络,这个结构包括一个输入层,三个卷积层,一个批标准化层,两个dropout层,一个平坦化层,一个 dense层。 dropout层:在神经网络中,dropout层是一个非常有效的正…...
vscode里如何用git
打开vs终端执行如下: 1 初始化 Git 仓库(如果尚未初始化) git init 2 添加文件到 Git 仓库 git add . 3 使用 git commit 命令来提交你的更改。确保在提交时加上一个有用的消息。 git commit -m "备注信息" 4 …...

7.4.分块查找
一.分块查找的算法思想: 1.实例: 以上述图片的顺序表为例, 该顺序表的数据元素从整体来看是乱序的,但如果把这些数据元素分成一块一块的小区间, 第一个区间[0,1]索引上的数据元素都是小于等于10的, 第二…...

智慧医疗能源事业线深度画像分析(上)
引言 医疗行业作为现代社会的关键基础设施,其能源消耗与环境影响正日益受到关注。随着全球"双碳"目标的推进和可持续发展理念的深入,智慧医疗能源事业线应运而生,致力于通过创新技术与管理方案,重构医疗领域的能源使用模式。这一事业线融合了能源管理、可持续发…...

RocketMQ延迟消息机制
两种延迟消息 RocketMQ中提供了两种延迟消息机制 指定固定的延迟级别 通过在Message中设定一个MessageDelayLevel参数,对应18个预设的延迟级别指定时间点的延迟级别 通过在Message中设定一个DeliverTimeMS指定一个Long类型表示的具体时间点。到了时间点后…...
golang循环变量捕获问题
在 Go 语言中,当在循环中启动协程(goroutine)时,如果在协程闭包中直接引用循环变量,可能会遇到一个常见的陷阱 - 循环变量捕获问题。让我详细解释一下: 问题背景 看这个代码片段: fo…...
Golang 面试经典题:map 的 key 可以是什么类型?哪些不可以?
Golang 面试经典题:map 的 key 可以是什么类型?哪些不可以? 在 Golang 的面试中,map 类型的使用是一个常见的考点,其中对 key 类型的合法性 是一道常被提及的基础却很容易被忽视的问题。本文将带你深入理解 Golang 中…...

【WiFi帧结构】
文章目录 帧结构MAC头部管理帧 帧结构 Wi-Fi的帧分为三部分组成:MAC头部frame bodyFCS,其中MAC是固定格式的,frame body是可变长度。 MAC头部有frame control,duration,address1,address2,addre…...

云启出海,智联未来|阿里云网络「企业出海」系列客户沙龙上海站圆满落地
借阿里云中企出海大会的东风,以**「云启出海,智联未来|打造安全可靠的出海云网络引擎」为主题的阿里云企业出海客户沙龙云网络&安全专场于5.28日下午在上海顺利举办,现场吸引了来自携程、小红书、米哈游、哔哩哔哩、波克城市、…...

如何在网页里填写 PDF 表格?
有时候,你可能希望用户能在你的网站上填写 PDF 表单。然而,这件事并不简单,因为 PDF 并不是一种原生的网页格式。虽然浏览器可以显示 PDF 文件,但原生并不支持编辑或填写它们。更糟的是,如果你想收集表单数据ÿ…...

MacOS下Homebrew国内镜像加速指南(2025最新国内镜像加速)
macos brew国内镜像加速方法 brew install 加速formula.jws.json下载慢加速 🍺 最新版brew安装慢到怀疑人生?别怕,教你轻松起飞! 最近Homebrew更新至最新版,每次执行 brew 命令时都会自动从官方地址 https://formulae.…...