当前位置: 首页 > news >正文

【先进PID控制算法(ADRC,TD,ESO)加入永磁同步电机发电控制仿真模型研究(Matlab代码实现)

 💥💥💞💞欢迎来到本博客❤️❤️💥💥

🏆博主优势:🌞🌞🌞博客内容尽量做到思维缜密,逻辑清晰,为了方便读者。

⛳️座右铭:行百里者,半于九十。

📋📋📋本文目录如下:🎁🎁🎁

目录

💥1 概述

📚2 运行结果

2.1 非线性自抗扰控制 

2.2 线性自抗扰控制 

2.3 Simulink仿真

2.4 永磁同步电机发电控制仿真模型

🎉3 参考文献

🌈4 Matlab代码、Simulink仿真实现


💥1 概述

先进PID控制算法(ADRC, TD, ESO)研究是对传统PID控制算法进行改进和优化的研究工作。这些算法通过引入新的控制策略和技术,提高了PID控制系统的性能和鲁棒性。

ADRC(Active Disturbance Rejection Control)是一种基于主动干扰抑制控制的算法。它通过对系统的干扰进行估计和补偿,实现对干扰的主动抑制,从而提高了系统的鲁棒性和控制精度。

TD(Two-Degree-of-Freedom)是一种基于两个自由度的控制算法。它将PID控制器分为两个部分,一个用于跟踪参考信号,另一个用于抑制干扰。通过独立调节这两个部分的参数,可以实现更好的跟踪性能和干扰抑制能力。

ESO(Extended State Observer)是一种扩展状态观测器算法。它通过估计系统的扩展状态,包括未建模的动态和干扰,从而实现对这些状态的补偿和抑制。ESO算法可以提高系统的鲁棒性和控制精度,特别适用于存在未建模动态和干扰的系统。

这些先进PID控制算法在工业控制系统中得到了广泛的应用和研究。通过引入新的控制策略和技术,它们可以提高系统的控制性能和鲁棒性,适应更加复杂和变化的工业控制需求。研究人员通过理论分析和实验验证,不断改进和优化这些算法,使其更加适用于不同的控制场景和应用领域。

📚2 运行结果

 

2.1 非线性自抗扰控制 

 

2.2 线性自抗扰控制 

 

  

2.3 Simulink仿真

 

 

2.4 永磁同步电机发电控制仿真模型

 

 

 

 

 

部分代码:

figure(1);
plot(time, v, 'r',time, y, 'k:', 'linewidth', 2);
% plot(time, e1, 'r', 'linewidth', 2);
legend('ideal position signal', 'position tracking signal');

function f = fst(x1,x2,delta,T)
    d = delta * T;
    d0 = T * d;
    y = x1 + T * x2;
    a0 = sqrt(d^2 + 8 * delta * abs(y));
    
    if abs(y) > d0
        a = x2 + (a0 - d) / 2 * sign(y);
    else
        a = x2 + y / T;
    end
    
    if abs(a) > d
        f = -delta * sign(a);
    else
        f = -delta * a/d;
    end
end

function y = fal(epec,alfa,delta)
    if abs(epec) > delta
        y = abs(epec)^alfa * sign(epec);
    else
        y = epec / (delta^(1 - alfa));
    end
end

function v = TD_ADRC(vo, yd, T, delta)
    v = zeros(2, 1);
    x1 = vo(1) - yd;
    x2 = vo(2);
    v(1) = vo(1) + T * vo(2);
    v(2) = vo(2) + T * fst(x1, x2, delta, T);
end

function z = LESO_ADRC(zo, y, uo, T)
    w0 = 7.5;

    z = zeros(3, 1);
    e = zo(1) - y;
    z(1) = zo(1) + T * (z(2) -  3 * w0 * e);
    z(2) = zo(2) + T * (z(3) - 3 * w0 * w0 * e + 133 * uo);
    z(3) = zo(3) - T * w0 * w0 * w0 * e;
end

function dy = PlantModel(yo, ut, clock, T)
    dy = zeros(3, 1);
    f = -25 * yo(2) + 33 * sin(pi * clock);
    %f = -25 * yo(2) + 0.5 * sign(sin(pi * clock));
    dy(1) = yo(1) + yo(2) * T;
    dy(2) = yo(2) + yo(3) * T;
    dy(3) = (f + 133 * ut) ;
end

function v = TD_Levant(zo, y, T)
    v = zeros(2, 1);
    alfa = 2;
    nmna = 6;
    v(1) = zo(1) + T * (zo(2) - nmna * sqrt(abs(zo(1) - y)) * sign(zo(1) - y));
    v(2) = zo(2) - T * alfa * sign(zo(1) - y);
end

🎉3 参考文献

文章中一些内容引自网络,会注明出处或引用为参考文献,难免有未尽之处,如有不妥,请随时联系删除。

[1]吉祥.永磁直线电机ADRC控制研究[D].浙江理工大学[2023-08-12].DOI:CNKI:CDMD:2.1017.043063.

[2]杨宣,张保生.基于先进控制算法的CFBB床温控制系统研究[J].自动化与仪表, 2018, 33(1):5.DOI:CNKI:SUN:ZDHY.0.2018-01-030.

[3]李杰,齐晓慧,韩帅涛.四种先进PID控制方法及性能比较[J].计算技术与自动化, 2012.DOI:CNKI:SUN:JSJH.0.2012-03-005.

🌈4 Matlab代码、Simulink仿真实现

相关文章:

【先进PID控制算法(ADRC,TD,ESO)加入永磁同步电机发电控制仿真模型研究(Matlab代码实现)

💥💥💞💞欢迎来到本博客❤️❤️💥💥 🏆博主优势:🌞🌞🌞博客内容尽量做到思维缜密,逻辑清晰,为了方便读者。 ⛳️座右铭&a…...

k8s集群生产环境的问题处理

2 k8s上的服务均无法访问 执行命令kubectl get pods -ALL,k8s集群中的服务均是running状态 1 kuboard 网页无法访问 kuboard无法通过浏览器访问,但是查看端口是被占用的...

serve : 无法将“serve”项识别为 cmdlet、函数、脚本文件或可运行程序的名称。

1、在学习webpack打包的时候,需要 serve用来启动开发服务器来部署代码查看效果的。安装完之后运行出现以下错误: 2、使用命令查看安装目录: npm list -g我们已经安装过了 3、解决: 我们看到上图路径在:C:\Users\qiy…...

【LVS】2、部署LVS-DR群集

LVS-DR数据包的流向分析 1.客户端发送请求到负载均衡器,请求的数据报文到达内核空间; 2.负载均衡服务器和正式服务器在同一个网络中,数据通过二层数据链路层来传输; 3.内核空间判断数据包的目标IP是本机VIP,此时IP虚…...

设计模式 -- 单例模式(传统面向对象与JavaScript 的对比实现)

单例模式 – 传统面向对象与JavaScript 的对比实现 文章目录 单例模式 -- 传统面向对象与JavaScript 的对比实现传统的面向对象的实现定义实现思路初级实现缺点 透明的单例模式实现目的(实现效果)实现缺点 用代理实现单例模式优点 JavaScript 中的单例模…...

YOLOX算法调试记录

YOLOX是在YOLOv3基础上改进而来,具有与YOLOv5相媲美的性能,其模型结构如下: 由于博主只是要用YOLOX做对比试验,因此并不需要对模型的结构太过了解。 先前博主调试过YOLOv5,YOLOv7,YOLOv8,相比而言,YOLOX的环…...

基于小程序的汽车俱乐部系统的设计与实现(论文+源码)_kaic

目录 前 言 1 系统概述 1.1 系统主要功能 1.2 开发及运行环境 2 系统分析和总体设计 2.1 需求分析 2.2 可行性分析 2.3 设计目标 2.4 项目规划 2.5 系统开发语言简介 2.6 系统功能模块图 3 系统数据库设计 3.1 数据库开发工具简介 3.2 数据库需求分析 3.3 数据库…...

ProgrammingArduino物联网

programming_arduino_ed2 IO 延时闪灯 void setup() {pinMode(13, OUTPUT); }void loop() {digitalWrite(13, HIGH);delay(500);digitalWrite(13, LOW);delay(500); }// sketch 03-02 加入变量 int ledPin 13; int delayPeriod 500;void setup() {pinMode(ledPin, OUTPUT)…...

SSM框架的学习与应用(Spring + Spring MVC + MyBatis)-Java EE企业级应用开发学习记录(第一天)Mybatis的学习

SSM框架的学习与应用(Spring Spring MVC MyBatis)-Java EE企业级应用开发学习记录(第一天)Mybatis的学习 一、当前的主流框架介绍(这就是后期我会发出来的框架学习) Spring框架 ​ Spring是一个开源框架,是为了解决企业应用程序开发复杂…...

Programming abstractions in C阅读笔记: p118-p122

《Programming Abstractions In C》学习第49天,p118-p122,总结如下: 一、技术总结 1.随机数 (1)seed p119,“The initial value–the value that is used to get the entire process start–is call a seed for the random ge…...

2023国赛数学建模思路 - 案例:ID3-决策树分类算法

文章目录 0 赛题思路1 算法介绍2 FP树表示法3 构建FP树4 实现代码 建模资料 0 赛题思路 (赛题出来以后第一时间在CSDN分享) https://blog.csdn.net/dc_sinor?typeblog 1 算法介绍 FP-Tree算法全称是FrequentPattern Tree算法,就是频繁模…...

selenium 选定ul-li下拉选项中某个指定选项

场景:selenium的下拉选项是ul-li模式,选定某个指定的选项。 from selenium.webdriver.support.ui import WebDriverWait from selenium.webdriver.support import expected_conditions as EC # 显示等待def select_li(self, text, *ul_locator):"…...

回归预测 | MATLAB实现FA-SVM萤火虫算法优化支持向量机多输入单输出回归预测(多指标,多图)

回归预测 | MATLAB实现FA-SVM萤火虫算法优化支持向量机多输入单输出回归预测(多指标,多图) 目录 回归预测 | MATLAB实现FA-SVM萤火虫算法优化支持向量机多输入单输出回归预测(多指标,多图)效果一览基本介绍…...

使用pytorch 的Transformer进行中英文翻译训练

下面是一个使用torch.nn.Transformer进行序列到序列(Sequence-to-Sequence)的机器翻译任务的示例代码,包括数据加载、模型搭建和训练过程。 import torch import torch.nn as nn from torch.nn import Transformer from torch.utils.data im…...

解决element的select组件创建新的选项可多选且opitions数据源中有数据的情况下,回车不能自动选中创建的问题

前言 最近开发项目使用element-plus库内的select组件,其中有提供一个创建新的选项的用法,但是发现一些小问题,在此记录 版本 “element-plus”: “^2.3.9”, “vue”: “^3.3.4”, 问题 1、在options数据源中无数据的时候,在输入框…...

人工智能大模型加速数据库存储模型发展 行列混合存储下的破局

数据存储模型 ​专栏内容: postgresql内核源码分析手写数据库toadb并发编程toadb开源库 个人主页:我的主页 座右铭:天行健,君子以自强不息;地势坤,君子以厚德载物. 概述 在数据库的发展过程中,关…...

K8S用户管理体系介绍

1 K8S账户体系介绍 在k8s中,有两类用户,service account和user,我们可以通过创建role或clusterrole,再将账户和role或clusterrole进行绑定来给账号赋予权限,实现权限控制,两类账户的作用如下。 server acc…...

实现chatGPT 聊天样式

效果图 代码&#xff1a; <!DOCTYPE html> <html lang"en"><head><meta charset"UTF-8"><meta name"viewport" content"widthdevice-width, initial-scale1.0"><title>Chat Example</title&g…...

day9 STM32 I2C总线通信

I2C总线简介 I2C总线介绍 I2C&#xff08;Inter-Integrated Circuit&#xff09;总线&#xff08;也称IIC或I2C&#xff09;是由PHILIPS公司开发的两线式串行总线&#xff0c;用于连接微控制器及其外围设备&#xff0c;是微电子通信控制领域广泛采用的一种总线标准。 它是同步通…...

终极Shell:Zsh(CentOS7 安装 zsh 及 配置 Oh my zsh)

CentOS7 安装 zsh 及 配置 Oh my zsh 我们在通过Shell操作linux终端时&#xff0c;配置、颜色区分、命令提示大都达不到我们预期的效果或者操作较为繁琐。 今天就来介绍一款终极一个及其好用的类Linux系统中的终端软件,江湖称之为马车中的跑车,跑车中的飞行车,史称『终极 Shell…...

XML Group端口详解

在XML数据映射过程中&#xff0c;经常需要对数据进行分组聚合操作。例如&#xff0c;当处理包含多个物料明细的XML文件时&#xff0c;可能需要将相同物料号的明细归为一组&#xff0c;或对相同物料号的数量进行求和计算。传统实现方式通常需要编写脚本代码&#xff0c;增加了开…...

云计算——弹性云计算器(ECS)

弹性云服务器&#xff1a;ECS 概述 云计算重构了ICT系统&#xff0c;云计算平台厂商推出使得厂家能够主要关注应用管理而非平台管理的云平台&#xff0c;包含如下主要概念。 ECS&#xff08;Elastic Cloud Server&#xff09;&#xff1a;即弹性云服务器&#xff0c;是云计算…...

基于当前项目通过npm包形式暴露公共组件

1.package.sjon文件配置 其中xh-flowable就是暴露出去的npm包名 2.创建tpyes文件夹&#xff0c;并新增内容 3.创建package文件夹...

江苏艾立泰跨国资源接力:废料变黄金的绿色供应链革命

在华东塑料包装行业面临限塑令深度调整的背景下&#xff0c;江苏艾立泰以一场跨国资源接力的创新实践&#xff0c;重新定义了绿色供应链的边界。 跨国回收网络&#xff1a;废料变黄金的全球棋局 艾立泰在欧洲、东南亚建立再生塑料回收点&#xff0c;将海外废弃包装箱通过标准…...

《通信之道——从微积分到 5G》读书总结

第1章 绪 论 1.1 这是一本什么样的书 通信技术&#xff0c;说到底就是数学。 那些最基础、最本质的部分。 1.2 什么是通信 通信 发送方 接收方 承载信息的信号 解调出其中承载的信息 信息在发送方那里被加工成信号&#xff08;调制&#xff09; 把信息从信号中抽取出来&am…...

css的定位(position)详解:相对定位 绝对定位 固定定位

在 CSS 中&#xff0c;元素的定位通过 position 属性控制&#xff0c;共有 5 种定位模式&#xff1a;static&#xff08;静态定位&#xff09;、relative&#xff08;相对定位&#xff09;、absolute&#xff08;绝对定位&#xff09;、fixed&#xff08;固定定位&#xff09;和…...

MySQL中【正则表达式】用法

MySQL 中正则表达式通过 REGEXP 或 RLIKE 操作符实现&#xff08;两者等价&#xff09;&#xff0c;用于在 WHERE 子句中进行复杂的字符串模式匹配。以下是核心用法和示例&#xff1a; 一、基础语法 SELECT column_name FROM table_name WHERE column_name REGEXP pattern; …...

全面解析各类VPN技术:GRE、IPsec、L2TP、SSL与MPLS VPN对比

目录 引言 VPN技术概述 GRE VPN 3.1 GRE封装结构 3.2 GRE的应用场景 GRE over IPsec 4.1 GRE over IPsec封装结构 4.2 为什么使用GRE over IPsec&#xff1f; IPsec VPN 5.1 IPsec传输模式&#xff08;Transport Mode&#xff09; 5.2 IPsec隧道模式&#xff08;Tunne…...

OPENCV形态学基础之二腐蚀

一.腐蚀的原理 (图1) 数学表达式&#xff1a;dst(x,y) erode(src(x,y)) min(x,y)src(xx,yy) 腐蚀也是图像形态学的基本功能之一&#xff0c;腐蚀跟膨胀属于反向操作&#xff0c;膨胀是把图像图像变大&#xff0c;而腐蚀就是把图像变小。腐蚀后的图像变小变暗淡。 腐蚀…...

微软PowerBI考试 PL300-在 Power BI 中清理、转换和加载数据

微软PowerBI考试 PL300-在 Power BI 中清理、转换和加载数据 Power Query 具有大量专门帮助您清理和准备数据以供分析的功能。 您将了解如何简化复杂模型、更改数据类型、重命名对象和透视数据。 您还将了解如何分析列&#xff0c;以便知晓哪些列包含有价值的数据&#xff0c;…...