当前位置: 首页 > news >正文

ORB-SLAM2学习笔记9之图像帧Frame

先占坑,明天再完善…

文章目录

  • 0 引言
  • 1 Frame类
    • 1.1 成员函数
    • 1.2 成员变量
  • 2 Frame类的用途

0 引言

ORB-SLAM2学习笔记8详细了解了图像特征点提取和描述子的生成,本文在此基础上,继续学习ORB-SLAM2中的图像帧,也就是Frame类,该类中主要包含设置相机参数、利用双目计算深度及特征点反投影到3D地图点等函数。

请添加图片描述

1 Frame类

构造函数Frame类主要的代码如下:
双目相机Frame:

// 双目相机Frame构造函数
Frame::Frame(const cv::Mat &imLeft, const cv::Mat &imRight, const double &timeStamp, ORBextractor *extractorLeft, ORBextractor *extractorRight, ORBVocabulary *voc, cv::Mat &K, cv::Mat &distCoef, const float &bf, const float &thDepth): mpORBvocabulary(voc), mpORBextractorLeft(extractorLeft), mpORBextractorRight(extractorRight), mTimeStamp(timeStamp), mK(K.clone()), mDistCoef(distCoef.clone()), mbf(bf), mThDepth(thDepth), mpReferenceKF(static_cast<KeyFrame *>(NULL)) {// step0. 帧ID自增mnId = nNextId++;// step1. 计算金字塔参数mnScaleLevels = mpORBextractorLeft->GetLevels();mfScaleFactor = mpORBextractorLeft->GetScaleFactor();mfLogScaleFactor = log(mfScaleFactor);mvScaleFactors = mpORBextractorLeft->GetScaleFactors();mvInvScaleFactors = mpORBextractorLeft->GetInverseScaleFactors();mvLevelSigma2 = mpORBextractorLeft->GetScaleSigmaSquares();mvInvLevelSigma2 = mpORBextractorLeft->GetInverseScaleSigmaSquares();// step2. 提取双目图像特征点thread threadLeft(&Frame::ExtractORB, this, 0, imLeft);thread threadRight(&Frame::ExtractORB, this, 1, imRight);threadLeft.join();threadRight.join();N = mvKeys.size();if (mvKeys.empty())return;// step3. 畸变矫正,实际上UndistortKeyPoints()不对双目图像进行矫正UndistortKeyPoints();// step4. 双目图像特征点匹配ComputeStereoMatches();// step5. 第一次调用构造函数时计算static变量if (mbInitialComputations) {ComputeImageBounds(imLeft);mfGridElementWidthInv = static_cast<float>(FRAME_GRID_COLS) / static_cast<float>(mnMaxX - mnMinX);mfGridElementHeightInv = static_cast<float>(FRAME_GRID_ROWS) / static_cast<float>(mnMaxY - mnMinY);fx = K.at<float>(0, 0);fy = K.at<float>(1, 1);cx = K.at<float>(0, 2);cy = K.at<float>(1, 2);invfx = 1.0f / fx;invfy = 1.0f / fy;// 计算完成,标志复位mbInitialComputations = false;}mvpMapPoints = vector<MapPoint *>(N, static_cast<MapPoint *>(NULL));	// 初始化本帧的地图点mvbOutlier = vector<bool>(N, false);	// 标记当前帧的地图点不是外点mb = mbf / fx;		// 计算双目基线长度// step6. 将特征点分配到网格中AssignFeaturesToGrid();
}

RGBD相机Frame:

// RGBD相机Frame构造函数
Frame::Frame(const cv::Mat &imGray, const cv::Mat &imDepth, const double &timeStamp, ORBextractor *extractor, ORBVocabulary *voc, cv::Mat &K, cv::Mat &distCoef, const float &bf, const float &thDepth): mpORBvocabulary(voc), mpORBextractorLeft(extractor), mpORBextractorRight(static_cast<ORBextractor *>(NULL)), mTimeStamp(timeStamp), mK(K.clone()), mDistCoef(distCoef.clone()), mbf(bf), mThDepth(thDepth) {// step0. 帧ID自增mnId = nNextId++;// step1. 计算金字塔参数mnScaleLevels = mpORBextractorLeft->GetLevels();mfScaleFactor = mpORBextractorLeft->GetScaleFactor();mfLogScaleFactor = log(mfScaleFactor);mvScaleFactors = mpORBextractorLeft->GetScaleFactors();mvInvScaleFactors = mpORBextractorLeft->GetInverseScaleFactors();mvLevelSigma2 = mpORBextractorLeft->GetScaleSigmaSquares();mvInvLevelSigma2 = mpORBextractorLeft->GetInverseScaleSigmaSquares();// step2. 提取左目图像特征点ExtractORB(0, imGray);N = mvKeys.size();if (mvKeys.empty())return;// step3. 畸变矫正UndistortKeyPoints();// step4. 根据深度信息构造虚拟右目图像ComputeStereoFromRGBD(imDepth);mvpMapPoints = vector<MapPoint *>(N, static_cast<MapPoint *>(NULL));mvbOutlier = vector<bool>(N, false);// step5. 第一次调用构造函数时计算static变量if (mbInitialComputations) {ComputeImageBounds(imLeft);mfGridElementWidthInv = static_cast<float>(FRAME_GRID_COLS) / static_cast<float>(mnMaxX - mnMinX);mfGridElementHeightInv = static_cast<float>(FRAME_GRID_ROWS) / static_cast<float>(mnMaxY - mnMinY);fx = K.at<float>(0, 0);fy = K.at<float>(1, 1);cx = K.at<float>(0, 2);cy = K.at<float>(1, 2);invfx = 1.0f / fx;invfy = 1.0f / fy;// 计算完成,标志复位mbInitialComputations = false;}mvpMapPoints = vector<MapPoint *>(N, static_cast<MapPoint *>(NULL));	// 初始化本帧的地图点mvbOutlier = vector<bool>(N, false);	// 标记当前帧的地图点不是外点mb = mbf / fx;		// 计算双目基线长度// step6. 将特征点分配到网格中AssignFeaturesToGrid();
}

1.1 成员函数

成员函数类型定义
ORBextractor* mpORBextractorLeft,ORBextractor* mpORBextractorRight public 左右目图像的特征点提取器
void ExtractORB(int flag, const cv::Mat &im) public进行ORB特征提取
cv::Mat mDescriptors,cv::Mat mDescriptorsRight public左右目图像特征点描述子
std::vector<cv::KeyPoint> mvKeys,std::vector<cv::KeyPoint> mvKeysRight public畸变矫正前的左/右目特征点
std::vector<cv::KeyPoint> mvKeysUn public畸变矫正后的左目特征点
std::vector<float> mvuRight public左目特征点在右目中匹配特征点的横坐标
(左右目匹配特征点的纵坐标相同)
std::vector<float> mvDepth public特征点深度
float mThDepth public判断单目特征点和双目特征点的阈值;深度低于该值得特征点被认为是双目特征点;深度低于该值得特征点被认为是单目特征点

1.2 成员变量

成员变量类型定义
mbInitialComputations public static变量,是否需要为Frame类的相机参数赋值,初始化为false,第一次为相机参数赋值后变为false
float fx, float fy, float cx, float cy, float invfx, float invfy public static变量,相机内参
cv::Mat mK public 相机内参矩阵
float mb public相机基线baseline,相机双目间的距离
float mbfpublic 相机基线baseline与焦距的乘积

Frame类大多与相机相关的参数,而且整个系统内的所有Frame对象共享同一份相机参数;

2 Frame类的用途

除了少数被选为KeyFrame的帧以外,大部分Frame对象的作用仅在于Tracking线程内追踪当前帧位姿,不会对LocalMapping线程和LoopClosing线程产生任何影响,在mLastFramemCurrentFrame更新之后就被系统销毁了。


Reference:

  • https://github.com/raulmur/ORB_SLAM2
  • https://github.com/electech6/ORB_SLAM2_detailed_comments/tree/master



须知少时凌云志,曾许人间第一流。



⭐️👍👍👍👍👍👍👍👍👍👍👍👍👍👍👍👍👍👍👍👍👍👍👍👍👍👍👍👍👍👍👍👍👍👍👍👍👍👍👍👍👍👍👍👍👍👍🌔

相关文章:

ORB-SLAM2学习笔记9之图像帧Frame

先占坑&#xff0c;明天再完善… 文章目录 0 引言1 Frame类1.1 成员函数1.2 成员变量 2 Frame类的用途 0 引言 ORB-SLAM2学习笔记8详细了解了图像特征点提取和描述子的生成&#xff0c;本文在此基础上&#xff0c;继续学习ORB-SLAM2中的图像帧&#xff0c;也就是Frame类&#…...

面试热题(不同的二分搜索树)

给你一个整数 n &#xff0c;求恰由 n 个节点组成且节点值从 1 到 n 互不相同的 二叉搜索树 有多少种&#xff1f;返回满足题意的二叉搜索树的种数。 经典的面试题&#xff0c;这部分涉及了组合数学中的卡特兰数&#xff0c;如果对其不清楚的同学可以去看我以前的博客卡特兰数 …...

MybatisPlus整合p6spy组件SQL分析

目录 p6spy java为什么需要 如何使用 其他配置 p6spy p6spy是一个开源项目&#xff0c;通常使用它来跟踪数据库操作&#xff0c;查看程序运行过程中执行的sql语句。 p6spy将应用的数据源给劫持了&#xff0c;应用操作数据库其实在调用p6spy的数据源&#xff0c;p6spy劫持到…...

项目实战 — 博客系统③ {功能实现}

目录 一、编写注册功能 &#x1f345; 1、使用ajax构造请求&#xff08;前端&#xff09; &#x1f345; 2、统一处理 &#x1f384; 统一对象处理 &#x1f384; 保底统一返回处理 &#x1f384; 统一异常处理 &#x1f345; 3、处理请求 二、编写登录功能 &#x1f345; …...

卷积神经网络全解:(AlexNet/VGG/ GoogLeNet/LeNet/ResNet/卷积/激活/池化/全连接)、现代卷积神经网络、经典卷积神经网络

CNN&#xff0c;卷积神经网络&#xff0c;Convolution Neural Network 卷积计算公式&#xff1a;N &#xff08;W-F2p&#xff09;/s1 这个公式每次都得看看&#xff0c;不能忘 1 经典网络 按照时间顺序 1.1 LeNet LeNet是 Yann LeCun在1998年提出&#xff0c;用于解决手…...

WDM 模型(Windows Driver Model)简述

WDM 模型(Windows Driver Model) 是微软公司为 Windows98 和 Windows2000 的驱动程序设计的一种架构&#xff0c;在 WDM 驱动程序模型中&#xff0c;每个硬件设备 至少有两个驱动程序。其中一个为功能驱动程序&#xff0c;它了解硬件工作的所有细节&#xff0c;负 责初始化 …...

【算法刷题之数组篇(1)】

目录 1.leetcode-59. 螺旋矩阵 II&#xff08;题2.题3相当于二分变形&#xff09;2.leetcode-33. 搜索旋转排序数组3.leetcode-81. 搜索旋转排序数组 II(与题目2对比理解)&#xff08;题4和题5都是排序双指针&#xff09;4.leetcode-15. 三数之和5.leetcode-18. 四数之和6.leet…...

【数据挖掘】使用 Python 分析公共数据【01/10】

一、说明 本文讨论了如何使用 Python 使用 Pandas 库分析官方 COVID-19 病例数据。您将看到如何从实际数据集中收集见解&#xff0c;发现乍一看可能不那么明显的信息。特别是&#xff0c;本文中提供的示例说明了如何获取有关疾病在不同国家/地区传播速度的信息。 二、准备您的…...

html怎么插入视频?视频如何插入页面

html怎么插入视频&#xff1f;视频如何插入页面 HTML 的功能强大&#xff0c;基本所有的静态效果都可以在此轻松呈现&#xff0c;各种视频网站内有大量的视频内容&#xff0c;本篇文章教你如何在 html 中插入视频 代码如下&#xff1a; <!DOCTYPE html> <html> …...

游戏服务端性能测试

导语&#xff1a;近期经历了一系列的性能测试&#xff0c;涵盖了Web服务器和游戏服务器的领域。在这篇文章中&#xff0c;我将会对游戏服务端所做的测试进行详细整理和记录。需要注意的是&#xff0c;本文着重于记录&#xff0c;而并非深入的编程讨论。在这里&#xff0c;我将与…...

【使用Zookeeper当作注册中心】自己定制负载均衡常见策略

自己定制负载均衡常见策略 一、前言随机&#xff08;Random&#xff09;策略的实现轮询&#xff08;Round Robin&#xff09;策略的实现哈希&#xff08;Hash&#xff09;策略 一、前言 大伙肯定知道&#xff0c;在分布式开发中&#xff0c;目前使用较多的注册中心有以下几个&…...

设计模式十七:迭代器模式(Iterator Pattern)

迭代器模式&#xff08;Iterator Pattern&#xff09;是一种行为型设计模式&#xff0c;它提供了一种访问聚合对象&#xff08;例如列表、集合、数组等&#xff09;中各个元素的方法&#xff0c;而无需暴露其内部表示。迭代器模式将遍历元素和访问元素的责任分离开来&#xff0…...

Python制作爱心并打包成手机端可执行文件

前言 本文是想要将python代码打包成在手机上能执行的文件 尝试了几个库&#xff0c; 有这也那样的限制&#xff0c;最终还是选了BeeWare 环境&#xff1a;python3.7.x 开始 找到打包有相关工具os-android-apk-builder&#xff0c;buildozer&#xff0c;cx_Freeze&#xff…...

使用docker-compose.yml快速搭建开发、部署环境(nginx、tomcat、mysql、jar包、各种程序)以及多容器通信和统一配置

目录 docker-compose语法&#xff08;更多说明可查看下面代码&#xff09;imagehostnamecontainer_namevolumesnetworks yml文件的使用启动停止 开发环境&#xff08;这里以python为例&#xff09;部署环境nginxmysqltomcatjar包打包后的可执行程序 常见问题与解决方案多个容器…...

管理类联考——逻辑——真题篇——按知识分类——汇总篇——二、论证逻辑——支持加强——第三节——分类3——类比题干支持

文章目录 第三节 支持加强-分类3-类比题干支持真题(2017-28)-支持加强-正面支持-表达“确实如此”真题(2017-36)-支持加强-正面支持-表达“确实如此”真题(2017-39)-支持加强-正面支持-方法有效或方法可行,但多半不选择方法无恶果真题(2017-50)-支持加强真题(2018-2…...

搜索旋转排序数组

整数数组 nums 按升序排列&#xff0c;数组中的值 互不相同 。 在传递给函数之前&#xff0c;nums 在预先未知的某个下标 k&#xff08;0 < k < nums.length&#xff09;上进行了 旋转&#xff0c;使数组变为 [nums[k], nums[k1], …, nums[n-1], nums[0], nums[1], …, …...

Steam搬砖项目:最长久稳定的副业!

项目应该大家都有听说话&#xff0c;但是细节问题&#xff0c;如何操作可能有些不是很清楚&#xff0c;今天在这里简单分享一下。 这个Steam搬砖项目主要赚钱汇率差和价值差&#xff0c;是一个细分领取的小项目。 不用引流&#xff0c;时间也是比较自由的&#xff0c;你可以兼…...

最小化安装移动云大云操作系统--BCLinux-R8-U8-Server-x86_64-230802版

CentOS 结束技术支持&#xff0c;转为RHEL的前置stream版本后&#xff0c;国内开源Linux服务器OS生态转向了开源龙蜥和开源欧拉两大开源社区&#xff0c;对应衍生出了一系列商用Linux服务器系统。BC-Linux V8.8是中国移动基于龙蜥社区Anolis OS 8.8版本深度定制的企业级X86服务…...

神经网络基础-神经网络补充概念-05-导数

概念 导数是微积分中的一个概念&#xff0c;用于描述函数在某一点的变化率。在数学中&#xff0c;函数的导数表示函数值随着自变量的微小变化而产生的变化量&#xff0c;即斜率或变化率。 假设有一个函数 f(x)&#xff0c;其中 x 是自变量&#xff0c;y f(x) 是因变量。函数…...

kubernetes — 安装Ingress

1、 Ingress 1、安装-Nginx-Ingress kubectl apply -f https://raw.githubusercontent.com/kubernetes/ingress-nginx/controller-v1.8.1/deploy/static/provider/cloud/deploy.yaml 2、设为默认的Ingress [rootk8s01 ~]# vim default_ingress.yaml apiVersion: networking.…...

后进先出(LIFO)详解

LIFO 是 Last In, First Out 的缩写&#xff0c;中文译为后进先出。这是一种数据结构的工作原则&#xff0c;类似于一摞盘子或一叠书本&#xff1a; 最后放进去的元素最先出来 -想象往筒状容器里放盘子&#xff1a; &#xff08;1&#xff09;你放进的最后一个盘子&#xff08…...

HTML 语义化

目录 HTML 语义化HTML5 新特性HTML 语义化的好处语义化标签的使用场景最佳实践 HTML 语义化 HTML5 新特性 标准答案&#xff1a; 语义化标签&#xff1a; <header>&#xff1a;页头<nav>&#xff1a;导航<main>&#xff1a;主要内容<article>&#x…...

R语言AI模型部署方案:精准离线运行详解

R语言AI模型部署方案:精准离线运行详解 一、项目概述 本文将构建一个完整的R语言AI部署解决方案,实现鸢尾花分类模型的训练、保存、离线部署和预测功能。核心特点: 100%离线运行能力自包含环境依赖生产级错误处理跨平台兼容性模型版本管理# 文件结构说明 Iris_AI_Deployme…...

DAY 47

三、通道注意力 3.1 通道注意力的定义 # 新增&#xff1a;通道注意力模块&#xff08;SE模块&#xff09; class ChannelAttention(nn.Module):"""通道注意力模块(Squeeze-and-Excitation)"""def __init__(self, in_channels, reduction_rat…...

华为OD机试-食堂供餐-二分法

import java.util.Arrays; import java.util.Scanner;public class DemoTest3 {public static void main(String[] args) {Scanner in new Scanner(System.in);// 注意 hasNext 和 hasNextLine 的区别while (in.hasNextLine()) { // 注意 while 处理多个 caseint a in.nextIn…...

VTK如何让部分单位不可见

最近遇到一个需求&#xff0c;需要让一个vtkDataSet中的部分单元不可见&#xff0c;查阅了一些资料大概有以下几种方式 1.通过颜色映射表来进行&#xff0c;是最正规的做法 vtkNew<vtkLookupTable> lut; //值为0不显示&#xff0c;主要是最后一个参数&#xff0c;透明度…...

C# SqlSugar:依赖注入与仓储模式实践

C# SqlSugar&#xff1a;依赖注入与仓储模式实践 在 C# 的应用开发中&#xff0c;数据库操作是必不可少的环节。为了让数据访问层更加简洁、高效且易于维护&#xff0c;许多开发者会选择成熟的 ORM&#xff08;对象关系映射&#xff09;框架&#xff0c;SqlSugar 就是其中备受…...

高防服务器能够抵御哪些网络攻击呢?

高防服务器作为一种有着高度防御能力的服务器&#xff0c;可以帮助网站应对分布式拒绝服务攻击&#xff0c;有效识别和清理一些恶意的网络流量&#xff0c;为用户提供安全且稳定的网络环境&#xff0c;那么&#xff0c;高防服务器一般都可以抵御哪些网络攻击呢&#xff1f;下面…...

使用 SymPy 进行向量和矩阵的高级操作

在科学计算和工程领域&#xff0c;向量和矩阵操作是解决问题的核心技能之一。Python 的 SymPy 库提供了强大的符号计算功能&#xff0c;能够高效地处理向量和矩阵的各种操作。本文将深入探讨如何使用 SymPy 进行向量和矩阵的创建、合并以及维度拓展等操作&#xff0c;并通过具体…...

vulnyx Blogger writeup

信息收集 arp-scan nmap 获取userFlag 上web看看 一个默认的页面&#xff0c;gobuster扫一下目录 可以看到扫出的目录中得到了一个有价值的目录/wordpress&#xff0c;说明目标所使用的cms是wordpress&#xff0c;访问http://192.168.43.213/wordpress/然后查看源码能看到 这…...