当前位置: 首页 > news >正文

国标混凝土结构设计规范的混凝土本构关系——基于python代码生成

文章目录

  • 0. 背景
  • 1. 代码
  • 2. 结果测试

0. 背景

最近在梳理混凝土塔筒的计算指南,在求解弯矩曲率关系以及MN相关曲线时,需要混凝土的本构关系作为输入条件。

1. 代码

这段代码还是比较简单的。不过需要注意的是,我把受拉和受压两种状态统一了起来,即规定受压为正,受拉为负。

def constitutive_GB(epsilon, Ec, f_cr, f_tr):'''按照 GB50010-2010混凝土结构设计规范 附录C的本构关系编制,由应变给出应力:param epsilon: 应变,压为正,拉为负:param Ec: 混凝土弹性模量,Mpa:param f_cr: 混凝土单轴抗压强度代表值, Mpa:param f_tr: 混凝土单轴抗拉强度代表值, Mpa:return: 应力, Mpa'''alpha_t = 0.312*f_tr*f_tr   #epsilon_tr = f_tr**0.54*65/10**6rho_t = f_tr / Ec / epsilon_tralpha_c = 0.157 * f_cr**0.785 - 0.905epsilon_cr = (700 + 172 * m.sqrt(f_cr))/10**6# epsilon_cu是极限压应变,不知道后面会不会用上,先保留# epsilon_cu = epsilon_cr / 2 / alpha_c * (1 + 2*alpha_c + m.sqrt(1 + 4*alpha_c))n = Ec * epsilon_cr / (Ec * epsilon_cr - f_cr)rho_c = f_cr / Ec / epsilon_crx = epsilon/epsilon_cr if epsilon >= 0 else epsilon/epsilon_trif x > 1:    # 受压状态d = 1 - rho_c / (alpha_c*(x-1)**2 + x)elif 0 <= x < 1:    # 受压状态d = 1 - rho_c*n / (n - 1 + x**n)elif -1 <= x < 0:   # 受拉状态d = 1 - rho_t * (1.2 + 0.2*x**5)     # 受拉时,应变为负值,x也为负值else:d = 1 - rho_t / (alpha_t * (-x-1)**1.7 -x)sigma = (1 - d)*Ec*epsilonreturn sigma

2. 结果测试

如下,以C70混凝土的相关参数,取应变值为0.0001670进行计算,结果与本文所附的Excel结果一致。说明这段代码应该是没有问题的。

# 受压时
epsilon = 0.0001670
Ec = 37000
f_cr = 31.8
f_tr = 2.14
sigma = constitutive_GB(epsilon, Ec, f_cr, f_tr)
# (sigma, d, n, rho_c)
# (6.12871040573435, 0.008138791756862052, 2.060440315282528, 0.5146668444686883)
# C70, 应变0.000167时结果与已有文件一致,
# 受拉时
epsilon = -9.8025*10**(-5) * 0.5
Ec = 37000
f_cr = 31.8
f_tr = 2.14sigma = constitutive_GB(epsilon, Ec, f_cr, f_tr)# (sigma, d, rho_t) 
# (-1.2773126624557158, 0.295649806678817, 0.5900315775743109)
# C70, 应变-9.8025*10**(-5) * 0.5时结果与已有文件一致(注意!受拉时应变应该为负值!!!)

相关文章:

国标混凝土结构设计规范的混凝土本构关系——基于python代码生成

文章目录 0. 背景1. 代码2. 结果测试 0. 背景 最近在梳理混凝土塔筒的计算指南&#xff0c;在求解弯矩曲率关系以及MN相关曲线时&#xff0c;需要混凝土的本构关系作为输入条件。 1. 代码 这段代码还是比较简单的。不过需要注意的是&#xff0c;我把受拉和受压两种状态统一了…...

系统架构设计-架构师之路(八)

软件架构概述 需求分析到软件设计之间的过渡过程就是软件架构。 需求分析人员整理成文档&#xff0c;但是开发人员对业务并不熟悉&#xff0c;这时候中间就需要一个即懂软件又懂业务的人&#xff0c;架构师来把文档整理成系统里的各个开发模块&#xff0c;布置开发任务。 软…...

【SA8295P 源码分析】25 - QNX Ethernet MAC 驱动 之 emac_isr_thread_handler 中断处理函数源码分析

【SA8295P 源码分析】25 - QNX Ethernet MAC 驱动 之 emac_isr_thread_handler 中断处理函数源码分析 一、emac 中断上半部:emac_isr()二、emac 中断下半部:emac_isr_thread_handler()2.1 emac 中断下半部:emac_isr_sw()系列文章汇总见:《【SA8295P 源码分析】00 - 系列文章…...

函数栈帧的创建与销毁

目录 引言 基础知识 内存模型 ​ 寄存器的种类与功能 常用的汇编指令 函数栈帧创建与销毁 main()函数栈帧的创建 NO1. NO2. NO3. NO4. NO5. NO6. main()函数栈帧变量的创建 调用Add()函数栈帧的预备工作——传参 NO1. NO2. NO3. Add()函数栈帧的创建 …...

工业安全生产平台在面粉行业的应用分享

一、背景介绍 面粉行业是一个传统的工业行业&#xff0c;安全生产问题一直备受关注。然而&#xff0c;由于生产过程中存在的各种安全隐患和风险&#xff0c;如粉尘爆炸、机械伤害等&#xff0c;使得面粉行业的安全生产形势依然严峻。为了解决这一问题&#xff0c;工业安全生产…...

Gitlab服务部署及应用

目录 Gitlab简介 Gitlab工作原理 Gitlab服务构成 Gitlab环境部署 安装依赖包 启动postfix&#xff0c;并设置开机自启 设置防火墙 下载安装gitlab rpm包 修改配置文件/etc/gitlab/gitlab.rb&#xff0c;生产环境下可以根据需求修改 重新加载配置文件 浏览器登录Gitlab输…...

【nodejs】用Node.js实现简单的壁纸网站爬虫

1. 简介 在这个博客中&#xff0c;我们将学习如何使用Node.js编写一个简单的爬虫来从壁纸网站获取图片并将其下载到本地。我们将使用Axios和Cheerio库来处理HTTP请求和HTML解析。 2. 设置项目 首先&#xff0c;确保你已经安装了Node.js环境。然后&#xff0c;我们将创建一个…...

xlsx xlsx-style file-saver 导出json数据到excel文件并设置标题字体加粗

xlsx&#xff1a;用于处理Excel文件。xlsx-style&#xff1a;用于添加样式到Excel文件中。file-saver&#xff1a;用于将生成的Excel文件保存到用户的计算机上 npm install xlsx xlsx-style file-saver// 导入所需库 const XLSX require(xlsx); const XLSXStyle require(xls…...

Win11游戏高性能模式怎么开

1、点击桌面任务栏上的“开始”图标&#xff0c;在打开的应用中&#xff0c;点击“设置”&#xff1b; 2、“设置”窗口&#xff0c;左侧找到“游戏”选项&#xff0c;在右侧的选项中&#xff0c;找到并点击打开“游戏模式”&#xff1b; 3、打开的“游戏模式”中&#xff0c;找…...

深度学习最强奠基作ResNet《Deep Residual Learning for Image Recognition》论文解读(上篇)

1、摘要 1.1 第一段 作者说深度神经网络是非常难以训练的&#xff0c;我们使用了一个残差学习框架的网络来使得训练非常深的网络比之前容易得很多。 把层作为一个残差学习函数相对于层输入的一个方法&#xff0c;而不是说跟之前一样的学习unreferenced functions 作者提供了…...

第22次CCF计算机软件能力认证

第一题&#xff1a;灰度直方图 解题思路&#xff1a; 哈希表即可 #include<iostream> #include<cstring>using namespace std;const int N 610; int a[N]; int n , m , l;int main() {memset(a , 0 , sizeof a);cin >> n >> m >> l;for(int …...

Go语言基础之基本数据类型

Go语言中有丰富的数据类型&#xff0c;除了基本的整型、浮点型、布尔型、字符串外&#xff0c;还有数组、切片、结构体、函数、map、通道&#xff08;channel&#xff09;等。Go 语言的基本类型和其他语言大同小异。 基本数据类型 整型 整型分为以下两个大类&#xff1a; 按…...

Linux Tracing Technologies

目录 1. Linux Tracing Technologies 1. Linux Tracing Technologies Linux Tracing TechnologieseBPFXDPDPDK...

iOS自定义下拉刷新控件

自定义下拉刷新控件 概述 用了很多的别人的下拉刷新控件&#xff0c;想写一个玩玩&#xff0c;自定义一个在使用的时候也会比较有意思。使应用更加的灵动一些&#xff0c;毕竟谁不喜欢各种动画恰到好处的应用呢。 使用方式如下&#xff1a; tableview.refreshControl XRef…...

Springboot写单元测试

导入依赖 <dependency><groupId>org.springframework.boot</groupId><artifactId>spring-boot-starter-test</artifactId><exclusions><exclusion><groupId>org.junit.vintage</groupId><artifactId>junit-vintag…...

一篇文章教你使用Docker本地化部署Chatgpt(非api,速度非常快!!!)及裸连GPT的方式(告别镜像GPT)

本地搭建ChatGPT&#xff08;非api调用&#xff09; 第一种方法&#xff1a;使用Docker本地化部署第一步&#xff0c;下载安装Docker登录GPT 第二种方法&#xff1a;不部署项目&#xff0c;直接连接 第一种方法&#xff1a;使用Docker本地化部署 这种方法的好处就是没有登录限…...

前馈神经网络dropout实例

直接看代码。 &#xff08;一&#xff09;手动实现 import torch import torch.nn as nn import numpy as np import torchvision import torchvision.transforms as transforms import matplotlib.pyplot as plt#下载MNIST手写数据集 mnist_train torchvision.datasets.MN…...

Android DataStore:安全存储和轻松管理数据

关于作者&#xff1a;CSDN内容合伙人、技术专家&#xff0c; 从零开始做日活千万级APP。 专注于分享各领域原创系列文章 &#xff0c;擅长java后端、移动开发、人工智能等&#xff0c;希望大家多多支持。 目录 一、导读二、概览三、使用3.1 Preferences DataStore添加依赖数据读…...

opencv进阶12-EigenFaces 人脸识别

EigenFaces 通常也被称为 特征脸&#xff0c;它使用主成分分析&#xff08;Principal Component Analysis&#xff0c;PCA&#xff09; 方法将高维的人脸数据处理为低维数据后&#xff08;降维&#xff09;&#xff0c;再进行数据分析和处理&#xff0c;获取识别结果。 基本原理…...

The internal rate of return (IRR)

内部收益率 NPV(Net Present Value)_spencer_tseng的博客-CSDN博客...

盘古信息PCB行业解决方案:以全域场景重构,激活智造新未来

一、破局&#xff1a;PCB行业的时代之问 在数字经济蓬勃发展的浪潮中&#xff0c;PCB&#xff08;印制电路板&#xff09;作为 “电子产品之母”&#xff0c;其重要性愈发凸显。随着 5G、人工智能等新兴技术的加速渗透&#xff0c;PCB行业面临着前所未有的挑战与机遇。产品迭代…...

React Native在HarmonyOS 5.0阅读类应用开发中的实践

一、技术选型背景 随着HarmonyOS 5.0对Web兼容层的增强&#xff0c;React Native作为跨平台框架可通过重新编译ArkTS组件实现85%以上的代码复用率。阅读类应用具有UI复杂度低、数据流清晰的特点。 二、核心实现方案 1. 环境配置 &#xff08;1&#xff09;使用React Native…...

工程地质软件市场:发展现状、趋势与策略建议

一、引言 在工程建设领域&#xff0c;准确把握地质条件是确保项目顺利推进和安全运营的关键。工程地质软件作为处理、分析、模拟和展示工程地质数据的重要工具&#xff0c;正发挥着日益重要的作用。它凭借强大的数据处理能力、三维建模功能、空间分析工具和可视化展示手段&…...

将对透视变换后的图像使用Otsu进行阈值化,来分离黑色和白色像素。这句话中的Otsu是什么意思?

Otsu 是一种自动阈值化方法&#xff0c;用于将图像分割为前景和背景。它通过最小化图像的类内方差或等价地最大化类间方差来选择最佳阈值。这种方法特别适用于图像的二值化处理&#xff0c;能够自动确定一个阈值&#xff0c;将图像中的像素分为黑色和白色两类。 Otsu 方法的原…...

P3 QT项目----记事本(3.8)

3.8 记事本项目总结 项目源码 1.main.cpp #include "widget.h" #include <QApplication> int main(int argc, char *argv[]) {QApplication a(argc, argv);Widget w;w.show();return a.exec(); } 2.widget.cpp #include "widget.h" #include &q…...

Python爬虫(一):爬虫伪装

一、网站防爬机制概述 在当今互联网环境中&#xff0c;具有一定规模或盈利性质的网站几乎都实施了各种防爬措施。这些措施主要分为两大类&#xff1a; 身份验证机制&#xff1a;直接将未经授权的爬虫阻挡在外反爬技术体系&#xff1a;通过各种技术手段增加爬虫获取数据的难度…...

tree 树组件大数据卡顿问题优化

问题背景 项目中有用到树组件用来做文件目录&#xff0c;但是由于这个树组件的节点越来越多&#xff0c;导致页面在滚动这个树组件的时候浏览器就很容易卡死。这种问题基本上都是因为dom节点太多&#xff0c;导致的浏览器卡顿&#xff0c;这里很明显就需要用到虚拟列表的技术&…...

稳定币的深度剖析与展望

一、引言 在当今数字化浪潮席卷全球的时代&#xff0c;加密货币作为一种新兴的金融现象&#xff0c;正以前所未有的速度改变着我们对传统货币和金融体系的认知。然而&#xff0c;加密货币市场的高度波动性却成为了其广泛应用和普及的一大障碍。在这样的背景下&#xff0c;稳定…...

学校时钟系统,标准考场时钟系统,AI亮相2025高考,赛思时钟系统为教育公平筑起“精准防线”

2025年#高考 将在近日拉开帷幕&#xff0c;#AI 监考一度冲上热搜。当AI深度融入高考&#xff0c;#时间同步 不再是辅助功能&#xff0c;而是决定AI监考系统成败的“生命线”。 AI亮相2025高考&#xff0c;40种异常行为0.5秒精准识别 2025年高考即将拉开帷幕&#xff0c;江西、…...

重启Eureka集群中的节点,对已经注册的服务有什么影响

先看答案&#xff0c;如果正确地操作&#xff0c;重启Eureka集群中的节点&#xff0c;对已经注册的服务影响非常小&#xff0c;甚至可以做到无感知。 但如果操作不当&#xff0c;可能会引发短暂的服务发现问题。 下面我们从Eureka的核心工作原理来详细分析这个问题。 Eureka的…...