分类预测 | MATLAB实现DRN深度残差网络多输入分类预测
分类预测 | MATLAB实现DRN深度残差网络多输入分类预测
目录
- 分类预测 | MATLAB实现DRN深度残差网络多输入分类预测
- 预测效果
- 基本介绍
- 程序设计
- 参考资料
预测效果




基本介绍
1.分类预测 | MATLAB实现DRN深度残差网络多输入分类预测
2.代码说明:MATLAB实现DRN深度残差网络多输入分类预测。
程序平台:要求于Matlab 2021版及以上版本。
程序设计
- 完整程序和数据获取方式1:同等价值程序兑换;
- 完整程序和数据获取方式2:私信博主回复 MATLAB实现DRN深度残差网络多输入分类预测获取。
%% 划分训练集和测试集
P_train = res(1: num_train_s, 1: f_)';
T_train = res(1: num_train_s, f_ + 1: end)';
M = size(P_train, 2);P_test = res(num_train_s + 1: end, 1: f_)';
T_test = res(num_train_s + 1: end, f_ + 1: end)';
N = size(P_test, 2);%% 数据归一化
[p_train, ps_input] = mapminmax(P_train, 0, 1);
p_test = mapminmax('apply', P_test, ps_input);[t_train, ps_output] = mapminmax(T_train, 0, 1);
t_test = mapminmax('apply', T_test, ps_output);
%% 个体极值和群体极值
[fitnesszbest, bestindex] = min(fitness);
zbest = pop(bestindex, :); % 全局最佳
gbest = pop; % 个体最佳
fitnessgbest = fitness; % 个体最佳适应度值
BestFit = fitnesszbest; % 全局最佳适应度值%% 迭代寻优
for i = 1 : maxgenfor j = 1 : sizepop% 速度更新V(j, :) = V(j, :) + c1 * rand * (gbest(j, :) - pop(j, :)) + c2 * rand * (zbest - pop(j, :));V(j, (V(j, :) > Vmax)) = Vmax;V(j, (V(j, :) < Vmin)) = Vmin;% 种群更新pop(j, :) = pop(j, :) + 0.2 * V(j, :);pop(j, (pop(j, :) > popmax)) = popmax;pop(j, (pop(j, :) < popmin)) = popmin;% 自适应变异pos = unidrnd(numsum);if rand > 0.95pop(j, pos) = rands(1, 1);end% 适应度值fitness(j) = fun(pop(j, :), hiddennum, net, p_train, t_train);endfor j = 1 : sizepop% 个体最优更新if fitness(j) < fitnessgbest(j)gbest(j, :) = pop(j, :);fitnessgbest(j) = fitness(j);end% 群体最优更新 if fitness(j) < fitnesszbestzbest = pop(j, :);fitnesszbest = fitness(j);endendBestFit = [BestFit, fitnesszbest];
end
————————————————
版权声明:本文为CSDN博主「机器学习之心」的原创文章,遵循CC 4.0 BY-SA版权协议,转载请附上原文出处链接及本声明。
原文链接:https://blog.csdn.net/kjm13182345320/article/details/130462492
参考资料
[1] https://blog.csdn.net/kjm13182345320/article/details/129679476?spm=1001.2014.3001.5501
[2] https://blog.csdn.net/kjm13182345320/article/details/129659229?spm=1001.2014.3001.5501
[3] https://blog.csdn.net/kjm13182345320/article/details/129653829?spm=1001.2014.3001.5501
相关文章:
分类预测 | MATLAB实现DRN深度残差网络多输入分类预测
分类预测 | MATLAB实现DRN深度残差网络多输入分类预测 目录 分类预测 | MATLAB实现DRN深度残差网络多输入分类预测预测效果基本介绍程序设计参考资料 预测效果 基本介绍 1.分类预测 | MATLAB实现DRN深度残差网络多输入分类预测 2.代码说明:MATLAB实现DRN深度残差网络…...
docker学习(十五)docker安装MongoDB
什么是MongoDB? MongoDB 是一个开源的、面向文档的 NoSQL 数据库管理系统,它以高性能、灵活的数据存储方式而闻名。与传统的关系型数据库不同,MongoDB 采用了一种称为 BSON(Binary JSON)的二进制 JSON 格式来存储数据。它是一种非…...
3.JQuery closest()的用法
closest()是一个非常好用的查找祖先对象的方法,它和parent()和parents()相比,优点是简洁直观,返回0或1个对象,避免了返回很多对象而不知道怎么处理的尴尬&…...
速通蓝桥杯嵌入式省一教程:(七)定时器输入捕获中断与PWM频率占空比测量
前文已经讲述过定时器的两个用法:基本定时中断与PWM输出。本节接着介绍第三种用法:定时器输入捕获中断。 在此之前,需要解释一下前文一直出现过的与定时器有关的概念。 定时器(TIMER):所谓定时器,其基本功能就是定时…...
深入理解python虚拟机:程序执行的载体——栈帧
栈帧(Stack Frame)是 Python 虚拟机中程序执行的载体之一,也是 Python 中的一种执行上下文。每当 Python 执行一个函数或方法时,都会创建一个栈帧来表示当前的函数调用,并将其压入一个称为调用栈(Call Stac…...
云服务器-Docker容器-系统搭建部署
一、引言 最近公司在海外上云服务器,作者自己也搞了云服务器去搭建部署系统,方便了解整体架构和系统的生命周期,排查解决问题可以从原理侧进行分析实验。虽然用的云不是同一个,但是原理都是相通的。 二、选型 作者选用的是腾讯云…...
ES 索引重命名--Reindex(一)
ES reindex脚本流程,下图为整体流程: 步骤(1):每次写入把之前的索引删除再重新创建索引,然后判断索引是否创建成功,由于创建成功返回结果是json,因此用Json Input插件去解析json获得…...
Spring之bean的生命周期
目录 1.Bean的初始化过程 1.1代码详解 1.2思考 2.Bean的单例与多例选择 2.1论证单例与多例优缺点 2.2论证初始化时间点 2.3个例演示 Spring Bean的生命周期: 一、通过XML、Java annotation(注解)以及Java Configuration(配置类),等方式…...
策略梯度方法
策略梯度方法 数学背景 给定一个标量函数 J ( θ ) J\left(\theta\right) J(θ),利用梯度上升法,使其最大化,此时的 π θ \pi_\theta πθ就是最优策略。 θ t 1 θ t α ∇ θ J ( θ t ) \theta_{t1}\theta_t\alpha \nabla_\theta…...
博客系统之单元测试
对博客系统进行单元测试 1、测试查找已存在的用户 测试名称 selectByUsernameTest01 测试源码 //查找用户,存在 Test public void selectByUsernameTest01 () { UserDao userDao new UserDao(); String ret1 userDao.selectByUsername("张三").toStr…...
【ARM v8】如何在ARM上实现x86的rdtsc()函数
博主未授权任何人或组织机构转载博主任何原创文章,感谢各位对原创的支持! 博主链接 本人就职于国际知名终端厂商,负责modem芯片研发。 在5G早期负责终端数据业务层、核心网相关的开发工作,目前牵头6G算力网络技术标准研究。 博客…...
redis--事务
redis事务 在Redis中,事务是一组原子性操作的集合,它们被一起执行,要么全部执行成功,要么全部回滚。虽然Redis的事务并不遵循传统数据库的ACID特性,但它仍然提供了一种将多个命令打包成一组执行的机制,适用…...
111. 二叉树的最小深度
111. 二叉树的最小深度 给定一个二叉树,找出其最小深度。 最小深度是从根节点到最近叶子节点的最短路径上的节点数量。 说明:叶子节点是指没有子节点的节点。 /*** Definition for a binary tree node.* struct TreeNode {* int val;* TreeN…...
SpringMVC归纳与总结
前言 Spring的核心是IOC,一种依赖反转的解耦思想。MVC是一种处理Web请求的架构模式,当两者的作用结合,就形成了SpringMVC。 组成及运行原理 1. 两次映射 2. 为什么用适配器模式 过滤器与拦截器 1. 范围 静态资源与动态资源2. 生命周期…...
Python学习笔记_进阶篇(三)_django知识(二)
本章内容 Django model Model 基础配置 django默认支持sqlite,mysql, oracle,postgresql数据库。 <1> sqlite django默认使用sqlite的数据库,默认自带sqlite的数据库驱动 引擎名称:django.db.backends.sqlite3 <2>mysql …...
RISC-V 整型通用寄存器介绍
简介 RISC-V64位/32位提供了32个整型通用寄存器,编号是x0~x31,这些整型通用寄存器的宽度与架构位数一致。 浮点数寄存器与整形寄存器一样也提供了32个:f0~f31,位数与架构位数一致。 通用寄存器介绍 零寄存器 x0/zero x0寄存…...
学习Vue:【性能优化】异步组件和懒加载
在Vue.js应用开发中,性能优化是一个至关重要的主题,而异步组件和懒加载是提升性能的有效方法之一。本文将介绍什么是异步组件和懒加载,以及如何在Vue.js中应用这些技术来提升应用性能。 异步组件和懒加载 异步组件 异步组件是指在需要的时候…...
pdf格式文件下载不预览,云存储的跨域解决
需求背景 后端接口中返回的是pdf文件路径比如: pdf文件路径 (https://wangzhendongsky.oss-cn-beijing.aliyuncs.com/wzd-test.pdf) 前端适配是这样的 <ahref"https://wangzhendongsky.oss-cn-beijing.aliyuncs.com/wzd-test.pdf&…...
httplib + nlohmann::json上传数据时中文乱码解决
1、nlohmann::json 1.1 编码格式使用UTF-8 参考 nlohmann::json 中文乱码解决方案 (1)将数据先转为UTF-8格式 2、httplib 2.1 上传数据前 (1)调用httplib::Response对象的set_header()方法来设置编码格式 httplib::Response res…...
JavaScript中的设计模式之一--单例模式和模块
虽然有一种疯狂天才的感觉可能很诱人,但重新发明轮子通常不是设计软件的最佳方法。很有可能有人已经遇到了和你一样的问题,并以一种聪明的方式解决了它。这样的最佳实践在形式化后被称为设计模式。今天我们来看看它们的概念,并检查单例模式和…...
使用VSCode开发Django指南
使用VSCode开发Django指南 一、概述 Django 是一个高级 Python 框架,专为快速、安全和可扩展的 Web 开发而设计。Django 包含对 URL 路由、页面模板和数据处理的丰富支持。 本文将创建一个简单的 Django 应用,其中包含三个使用通用基本模板的页面。在此…...
Debian系统简介
目录 Debian系统介绍 Debian版本介绍 Debian软件源介绍 软件包管理工具dpkg dpkg核心指令详解 安装软件包 卸载软件包 查询软件包状态 验证软件包完整性 手动处理依赖关系 dpkg vs apt Debian系统介绍 Debian 和 Ubuntu 都是基于 Debian内核 的 Linux 发行版ÿ…...
DAY 47
三、通道注意力 3.1 通道注意力的定义 # 新增:通道注意力模块(SE模块) class ChannelAttention(nn.Module):"""通道注意力模块(Squeeze-and-Excitation)"""def __init__(self, in_channels, reduction_rat…...
pam_env.so模块配置解析
在PAM(Pluggable Authentication Modules)配置中, /etc/pam.d/su 文件相关配置含义如下: 配置解析 auth required pam_env.so1. 字段分解 字段值说明模块类型auth认证类模块,负责验证用户身份&am…...
CentOS下的分布式内存计算Spark环境部署
一、Spark 核心架构与应用场景 1.1 分布式计算引擎的核心优势 Spark 是基于内存的分布式计算框架,相比 MapReduce 具有以下核心优势: 内存计算:数据可常驻内存,迭代计算性能提升 10-100 倍(文档段落:3-79…...
质量体系的重要
质量体系是为确保产品、服务或过程质量满足规定要求,由相互关联的要素构成的有机整体。其核心内容可归纳为以下五个方面: 🏛️ 一、组织架构与职责 质量体系明确组织内各部门、岗位的职责与权限,形成层级清晰的管理网络…...
数据库分批入库
今天在工作中,遇到一个问题,就是分批查询的时候,由于批次过大导致出现了一些问题,一下是问题描述和解决方案: 示例: // 假设已有数据列表 dataList 和 PreparedStatement pstmt int batchSize 1000; // …...
基于matlab策略迭代和值迭代法的动态规划
经典的基于策略迭代和值迭代法的动态规划matlab代码,实现机器人的最优运输 Dynamic-Programming-master/Environment.pdf , 104724 Dynamic-Programming-master/README.md , 506 Dynamic-Programming-master/generalizedPolicyIteration.m , 1970 Dynamic-Programm…...
AI病理诊断七剑下天山,医疗未来触手可及
一、病理诊断困局:刀尖上的医学艺术 1.1 金标准背后的隐痛 病理诊断被誉为"诊断的诊断",医生需通过显微镜观察组织切片,在细胞迷宫中捕捉癌变信号。某省病理质控报告显示,基层医院误诊率达12%-15%,专家会诊…...
推荐 github 项目:GeminiImageApp(图片生成方向,可以做一定的素材)
推荐 github 项目:GeminiImageApp(图片生成方向,可以做一定的素材) 这个项目能干嘛? 使用 gemini 2.0 的 api 和 google 其他的 api 来做衍生处理 简化和优化了文生图和图生图的行为(我的最主要) 并且有一些目标检测和切割(我用不到) 视频和 imagefx 因为没 a…...
