当前位置: 首页 > news >正文

分类预测 | MATLAB实现DRN深度残差网络多输入分类预测

分类预测 | MATLAB实现DRN深度残差网络多输入分类预测

目录

    • 分类预测 | MATLAB实现DRN深度残差网络多输入分类预测
      • 预测效果
      • 基本介绍
      • 程序设计
      • 参考资料

预测效果

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

基本介绍

1.分类预测 | MATLAB实现DRN深度残差网络多输入分类预测
2.代码说明:MATLAB实现DRN深度残差网络多输入分类预测。
程序平台:要求于Matlab 2021版及以上版本。

程序设计

  • 完整程序和数据获取方式1:同等价值程序兑换;
  • 完整程序和数据获取方式2:私信博主回复 MATLAB实现DRN深度残差网络多输入分类预测获取。
%%  划分训练集和测试集
P_train = res(1: num_train_s, 1: f_)';
T_train = res(1: num_train_s, f_ + 1: end)';
M = size(P_train, 2);P_test = res(num_train_s + 1: end, 1: f_)';
T_test = res(num_train_s + 1: end, f_ + 1: end)';
N = size(P_test, 2);%%  数据归一化
[p_train, ps_input] = mapminmax(P_train, 0, 1);
p_test = mapminmax('apply', P_test, ps_input);[t_train, ps_output] = mapminmax(T_train, 0, 1);
t_test = mapminmax('apply', T_test, ps_output);
%%  个体极值和群体极值
[fitnesszbest, bestindex] = min(fitness);
zbest = pop(bestindex, :);     % 全局最佳
gbest = pop;                   % 个体最佳
fitnessgbest = fitness;        % 个体最佳适应度值
BestFit = fitnesszbest;        % 全局最佳适应度值%%  迭代寻优
for i = 1 : maxgenfor j = 1 : sizepop% 速度更新V(j, :) = V(j, :) + c1 * rand * (gbest(j, :) - pop(j, :)) + c2 * rand * (zbest - pop(j, :));V(j, (V(j, :) > Vmax)) = Vmax;V(j, (V(j, :) < Vmin)) = Vmin;% 种群更新pop(j, :) = pop(j, :) + 0.2 * V(j, :);pop(j, (pop(j, :) > popmax)) = popmax;pop(j, (pop(j, :) < popmin)) = popmin;% 自适应变异pos = unidrnd(numsum);if rand > 0.95pop(j, pos) = rands(1, 1);end% 适应度值fitness(j) = fun(pop(j, :), hiddennum, net, p_train, t_train);endfor j = 1 : sizepop% 个体最优更新if fitness(j) < fitnessgbest(j)gbest(j, :) = pop(j, :);fitnessgbest(j) = fitness(j);end% 群体最优更新 if fitness(j) < fitnesszbestzbest = pop(j, :);fitnesszbest = fitness(j);endendBestFit = [BestFit, fitnesszbest];    
end
————————————————
版权声明:本文为CSDN博主「机器学习之心」的原创文章,遵循CC 4.0 BY-SA版权协议,转载请附上原文出处链接及本声明。
原文链接:https://blog.csdn.net/kjm13182345320/article/details/130462492

参考资料

[1] https://blog.csdn.net/kjm13182345320/article/details/129679476?spm=1001.2014.3001.5501
[2] https://blog.csdn.net/kjm13182345320/article/details/129659229?spm=1001.2014.3001.5501
[3] https://blog.csdn.net/kjm13182345320/article/details/129653829?spm=1001.2014.3001.5501

相关文章:

分类预测 | MATLAB实现DRN深度残差网络多输入分类预测

分类预测 | MATLAB实现DRN深度残差网络多输入分类预测 目录 分类预测 | MATLAB实现DRN深度残差网络多输入分类预测预测效果基本介绍程序设计参考资料 预测效果 基本介绍 1.分类预测 | MATLAB实现DRN深度残差网络多输入分类预测 2.代码说明&#xff1a;MATLAB实现DRN深度残差网络…...

docker学习(十五)docker安装MongoDB

什么是MongoDB? MongoDB 是一个开源的、面向文档的 NoSQL 数据库管理系统&#xff0c;它以高性能、灵活的数据存储方式而闻名。与传统的关系型数据库不同&#xff0c;MongoDB 采用了一种称为 BSON&#xff08;Binary JSON&#xff09;的二进制 JSON 格式来存储数据。它是一种非…...

3.JQuery closest()的用法

closest&#xff08;&#xff09;是一个非常好用的查找祖先对象的方法&#xff0c;它和parent&#xff08;&#xff09;和parents&#xff08;&#xff09;相比&#xff0c;优点是简洁直观&#xff0c;返回0或1个对象&#xff0c;避免了返回很多对象而不知道怎么处理的尴尬&…...

速通蓝桥杯嵌入式省一教程:(七)定时器输入捕获中断与PWM频率占空比测量

前文已经讲述过定时器的两个用法&#xff1a;基本定时中断与PWM输出。本节接着介绍第三种用法&#xff1a;定时器输入捕获中断。 在此之前&#xff0c;需要解释一下前文一直出现过的与定时器有关的概念。 定时器(TIMER)&#xff1a;所谓定时器&#xff0c;其基本功能就是定时…...

深入理解python虚拟机:程序执行的载体——栈帧

栈帧&#xff08;Stack Frame&#xff09;是 Python 虚拟机中程序执行的载体之一&#xff0c;也是 Python 中的一种执行上下文。每当 Python 执行一个函数或方法时&#xff0c;都会创建一个栈帧来表示当前的函数调用&#xff0c;并将其压入一个称为调用栈&#xff08;Call Stac…...

云服务器-Docker容器-系统搭建部署

一、引言 最近公司在海外上云服务器&#xff0c;作者自己也搞了云服务器去搭建部署系统&#xff0c;方便了解整体架构和系统的生命周期&#xff0c;排查解决问题可以从原理侧进行分析实验。虽然用的云不是同一个&#xff0c;但是原理都是相通的。 二、选型 作者选用的是腾讯云…...

ES 索引重命名--Reindex(一)

ES reindex脚本流程&#xff0c;下图为整体流程&#xff1a; 步骤&#xff08;1&#xff09;&#xff1a;每次写入把之前的索引删除再重新创建索引&#xff0c;然后判断索引是否创建成功&#xff0c;由于创建成功返回结果是json&#xff0c;因此用Json Input插件去解析json获得…...

Spring之bean的生命周期

目录 1.Bean的初始化过程 1.1代码详解 1.2思考 2.Bean的单例与多例选择 2.1论证单例与多例优缺点 2.2论证初始化时间点 2.3个例演示 Spring Bean的生命周期&#xff1a; 一、通过XML、Java annotation&#xff08;注解&#xff09;以及Java Configuration(配置类),等方式…...

策略梯度方法

策略梯度方法 数学背景 给定一个标量函数 J ( θ ) J\left(\theta\right) J(θ)&#xff0c;利用梯度上升法&#xff0c;使其最大化&#xff0c;此时的 π θ \pi_\theta πθ​就是最优策略。 θ t 1 θ t α ∇ θ J ( θ t ) \theta_{t1}\theta_t\alpha \nabla_\theta…...

博客系统之单元测试

对博客系统进行单元测试 1、测试查找已存在的用户 测试名称 selectByUsernameTest01 测试源码 //查找用户&#xff0c;存在 Test public void selectByUsernameTest01 () { UserDao userDao new UserDao(); String ret1 userDao.selectByUsername("张三").toStr…...

【ARM v8】如何在ARM上实现x86的rdtsc()函数

博主未授权任何人或组织机构转载博主任何原创文章&#xff0c;感谢各位对原创的支持&#xff01; 博主链接 本人就职于国际知名终端厂商&#xff0c;负责modem芯片研发。 在5G早期负责终端数据业务层、核心网相关的开发工作&#xff0c;目前牵头6G算力网络技术标准研究。 博客…...

redis--事务

redis事务 在Redis中&#xff0c;事务是一组原子性操作的集合&#xff0c;它们被一起执行&#xff0c;要么全部执行成功&#xff0c;要么全部回滚。虽然Redis的事务并不遵循传统数据库的ACID特性&#xff0c;但它仍然提供了一种将多个命令打包成一组执行的机制&#xff0c;适用…...

111. 二叉树的最小深度

111. 二叉树的最小深度 给定一个二叉树&#xff0c;找出其最小深度。 最小深度是从根节点到最近叶子节点的最短路径上的节点数量。 说明&#xff1a;叶子节点是指没有子节点的节点。 /*** Definition for a binary tree node.* struct TreeNode {* int val;* TreeN…...

SpringMVC归纳与总结

前言 Spring的核心是IOC&#xff0c;一种依赖反转的解耦思想。MVC是一种处理Web请求的架构模式&#xff0c;当两者的作用结合&#xff0c;就形成了SpringMVC。 组成及运行原理 1. 两次映射 2. 为什么用适配器模式 过滤器与拦截器 1. 范围 静态资源与动态资源2. 生命周期…...

Python学习笔记_进阶篇(三)_django知识(二)

本章内容 Django model Model 基础配置 django默认支持sqlite&#xff0c;mysql, oracle,postgresql数据库。 <1> sqlite django默认使用sqlite的数据库&#xff0c;默认自带sqlite的数据库驱动 引擎名称&#xff1a;django.db.backends.sqlite3 <2>mysql …...

RISC-V 整型通用寄存器介绍

简介 RISC-V64位/32位提供了32个整型通用寄存器&#xff0c;编号是x0~x31&#xff0c;这些整型通用寄存器的宽度与架构位数一致。 浮点数寄存器与整形寄存器一样也提供了32个&#xff1a;f0~f31&#xff0c;位数与架构位数一致。 通用寄存器介绍 零寄存器 x0/zero x0寄存…...

学习Vue:【性能优化】异步组件和懒加载

在Vue.js应用开发中&#xff0c;性能优化是一个至关重要的主题&#xff0c;而异步组件和懒加载是提升性能的有效方法之一。本文将介绍什么是异步组件和懒加载&#xff0c;以及如何在Vue.js中应用这些技术来提升应用性能。 异步组件和懒加载 异步组件 异步组件是指在需要的时候…...

pdf格式文件下载不预览,云存储的跨域解决

需求背景 后端接口中返回的是pdf文件路径比如&#xff1a; pdf文件路径 &#xff08;https://wangzhendongsky.oss-cn-beijing.aliyuncs.com/wzd-test.pdf&#xff09; 前端适配是这样的 <ahref"https://wangzhendongsky.oss-cn-beijing.aliyuncs.com/wzd-test.pdf&…...

httplib + nlohmann::json上传数据时中文乱码解决

1、nlohmann::json 1.1 编码格式使用UTF-8 参考 nlohmann::json 中文乱码解决方案 &#xff08;1&#xff09;将数据先转为UTF-8格式 2、httplib 2.1 上传数据前 &#xff08;1&#xff09;调用httplib::Response对象的set_header()方法来设置编码格式 httplib::Response res…...

JavaScript中的设计模式之一--单例模式和模块

虽然有一种疯狂天才的感觉可能很诱人&#xff0c;但重新发明轮子通常不是设计软件的最佳方法。很有可能有人已经遇到了和你一样的问题&#xff0c;并以一种聪明的方式解决了它。这样的最佳实践在形式化后被称为设计模式。今天我们来看看它们的概念&#xff0c;并检查单例模式和…...

AI-调查研究-01-正念冥想有用吗?对健康的影响及科学指南

点一下关注吧&#xff01;&#xff01;&#xff01;非常感谢&#xff01;&#xff01;持续更新&#xff01;&#xff01;&#xff01; &#x1f680; AI篇持续更新中&#xff01;&#xff08;长期更新&#xff09; 目前2025年06月05日更新到&#xff1a; AI炼丹日志-28 - Aud…...

vscode里如何用git

打开vs终端执行如下&#xff1a; 1 初始化 Git 仓库&#xff08;如果尚未初始化&#xff09; git init 2 添加文件到 Git 仓库 git add . 3 使用 git commit 命令来提交你的更改。确保在提交时加上一个有用的消息。 git commit -m "备注信息" 4 …...

HTML 语义化

目录 HTML 语义化HTML5 新特性HTML 语义化的好处语义化标签的使用场景最佳实践 HTML 语义化 HTML5 新特性 标准答案&#xff1a; 语义化标签&#xff1a; <header>&#xff1a;页头<nav>&#xff1a;导航<main>&#xff1a;主要内容<article>&#x…...

零门槛NAS搭建:WinNAS如何让普通电脑秒变私有云?

一、核心优势&#xff1a;专为Windows用户设计的极简NAS WinNAS由深圳耘想存储科技开发&#xff0c;是一款收费低廉但功能全面的Windows NAS工具&#xff0c;主打“无学习成本部署” 。与其他NAS软件相比&#xff0c;其优势在于&#xff1a; 无需硬件改造&#xff1a;将任意W…...

【WiFi帧结构】

文章目录 帧结构MAC头部管理帧 帧结构 Wi-Fi的帧分为三部分组成&#xff1a;MAC头部frame bodyFCS&#xff0c;其中MAC是固定格式的&#xff0c;frame body是可变长度。 MAC头部有frame control&#xff0c;duration&#xff0c;address1&#xff0c;address2&#xff0c;addre…...

Docker 运行 Kafka 带 SASL 认证教程

Docker 运行 Kafka 带 SASL 认证教程 Docker 运行 Kafka 带 SASL 认证教程一、说明二、环境准备三、编写 Docker Compose 和 jaas文件docker-compose.yml代码说明&#xff1a;server_jaas.conf 四、启动服务五、验证服务六、连接kafka服务七、总结 Docker 运行 Kafka 带 SASL 认…...

鸿蒙中用HarmonyOS SDK应用服务 HarmonyOS5开发一个医院查看报告小程序

一、开发环境准备 ​​工具安装​​&#xff1a; 下载安装DevEco Studio 4.0&#xff08;支持HarmonyOS 5&#xff09;配置HarmonyOS SDK 5.0确保Node.js版本≥14 ​​项目初始化​​&#xff1a; ohpm init harmony/hospital-report-app 二、核心功能模块实现 1. 报告列表…...

SpringBoot+uniapp 的 Champion 俱乐部微信小程序设计与实现,论文初版实现

摘要 本论文旨在设计并实现基于 SpringBoot 和 uniapp 的 Champion 俱乐部微信小程序&#xff0c;以满足俱乐部线上活动推广、会员管理、社交互动等需求。通过 SpringBoot 搭建后端服务&#xff0c;提供稳定高效的数据处理与业务逻辑支持&#xff1b;利用 uniapp 实现跨平台前…...

【C语言练习】080. 使用C语言实现简单的数据库操作

080. 使用C语言实现简单的数据库操作 080. 使用C语言实现简单的数据库操作使用原生APIODBC接口第三方库ORM框架文件模拟1. 安装SQLite2. 示例代码:使用SQLite创建数据库、表和插入数据3. 编译和运行4. 示例运行输出:5. 注意事项6. 总结080. 使用C语言实现简单的数据库操作 在…...

【python异步多线程】异步多线程爬虫代码示例

claude生成的python多线程、异步代码示例&#xff0c;模拟20个网页的爬取&#xff0c;每个网页假设要0.5-2秒完成。 代码 Python多线程爬虫教程 核心概念 多线程&#xff1a;允许程序同时执行多个任务&#xff0c;提高IO密集型任务&#xff08;如网络请求&#xff09;的效率…...