当前位置: 首页 > news >正文

高等数学:线性代数-第二章

文章目录

  • 第2章 矩阵及其运算
    • 2.1 线性方程组和矩阵
    • 2.2 矩阵的运算
    • 2.3 逆矩阵
    • 2.4 Cramer法则

第2章 矩阵及其运算

2.1 线性方程组和矩阵

n \bm{n} n 元线性方程组 设有 n 个未知数 m 个方程的线性方程组
{ a 11 x 1 + a 12 x 2 + ⋯ + a 1 n x n = b 1 a 21 x 1 + a 22 x 2 + ⋯ + a 2 n x n = b 2 ⋯ ⋯ ⋯ ⋯ a m 1 x 1 + a m 2 x 2 + ⋯ + a m n x n = b m \begin{cases} a_{11}x_{1} + a_{12}x_{2} + \cdots + a_{1n}x_{n} = b_{1} \\ a_{21}x_{1} + a_{22}x_{2} + \cdots + a_{2n}x_{n} = b_{2} \\ \cdots\cdots\cdots\cdots \\ a_{m1}x_{1} + a_{m2}x_{2} + \cdots + a_{mn}x_{n} = b_{m} \\ \end{cases} \\ a11x1+a12x2++a1nxn=b1a21x1+a22x2++a2nxn=b2⋯⋯⋯⋯am1x1+am2x2++amnxn=bm
当常数项 b i b_{i} bi 不全为零时,称该方程组为n 元非齐次线性方程组,当 b i b_{i} bi 全为零时,称该方程组为n 元齐次线性方程组。

矩阵 由 m × n m \times n m×n 个数 a i j a_{ij} aij 排成的 m 行 n 列的数表
a 11 a 12 ⋯ a 1 n a 21 a 22 ⋯ a 2 n ⋮ ⋮ ⋱ ⋮ a m 1 a m 2 ⋯ a m n \begin{matrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{m1} & a_{m2} & \cdots & a_{mn} \\ \end{matrix} \\ a11a21am1a12a22am2a1na2namn
称为 m × n m \times n m×n矩阵,记作
A = ( a 11 a 12 ⋯ a 1 n a 21 a 22 ⋯ a 2 n ⋮ ⋮ ⋱ ⋮ a m 1 a m 2 ⋯ a m n ) \bm{A} = \begin{pmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{m1} & a_{m2} & \cdots & a_{mn} \\ \end{pmatrix} \\ A= a11a21am1a12a22am2a1na2namn
特别地,当 m = n 时,该矩阵叫做n 阶方阵。

增广矩阵 对于非齐次线性方程组
{ a 11 x 1 + a 12 x 2 + ⋯ + a 1 n x n = b 1 a 21 x 1 + a 22 x 2 + ⋯ + a 2 n x n = b 2 ⋯ ⋯ ⋯ ⋯ a m 1 x 1 + a m 2 x 2 + ⋯ + a m n x n = b m \begin{cases} a_{11}x_{1} + a_{12}x_{2} + \cdots + a_{1n}x_{n} = b_{1} \\ a_{21}x_{1} + a_{22}x_{2} + \cdots + a_{2n}x_{n} = b_{2} \\ \cdots\cdots\cdots\cdots \\ a_{m1}x_{1} + a_{m2}x_{2} + \cdots + a_{mn}x_{n} = b_{m} \\ \end{cases} \\ a11x1+a12x2++a1nxn=b1a21x1+a22x2++a2nxn=b2⋯⋯⋯⋯am1x1+am2x2++amnxn=bm
它的系数矩阵、未知数矩阵和常数项矩阵分别如下:
A = ( a i j ) m × n x = ( x 1 x 2 ⋯ x n ) b = ( b 1 b 2 ⋯ b m ) \begin{align} &\bm{A} = (a_{ij})_{m \times n} \\ &\bm{x} = \begin{pmatrix} x_{1} & x_{2} & \cdots & x_{n} \\ \end{pmatrix} \\ &\bm{b} = \begin{pmatrix} b_{1} & b_{2} & \cdots & b_{m} \\ \end{pmatrix} \\ \end{align} \\ A=(aij)m×nx=(x1x2xn)b=(b1b2bm)
它的增广矩阵定义为
B = ( A b ) = ( a 11 a 12 ⋯ a 1 n b 1 a 21 a 22 ⋯ a 2 n b 2 ⋮ ⋮ ⋱ ⋮ ⋮ a m 1 a m 2 ⋯ a m n b m ) \bm{B} = ( \begin{array}{c|c} \bm{A} & \bm{b} \end{array} ) = \begin{pmatrix} a_{11} & a_{12} & \cdots & a_{1n} & b_{1} \\ a_{21} & a_{22} & \cdots & a_{2n} & b_{2} \\ \vdots & \vdots & \ddots & \vdots & \vdots \\ a_{m1} & a_{m2} & \cdots & a_{mn} & b_{m} \\ \end{pmatrix} \\ B=(Ab)= a11a21am1a12a22am2a1na2namnb1b2bm
对角矩阵 方阵

( λ 1 λ 2 ⋱ λ n ) \begin{pmatrix} \lambda_{1} & & & \\ & \lambda_{2} & & \\ & & \ddots & \\ & & & \lambda_{n} \\ \end{pmatrix} \\ λ1λ2λn
叫做对角矩阵,简称对角阵,记作 d i a g ( λ 1 λ 2 ⋯ λ n ) \mathrm{diag}(\begin{array}{ccc} \lambda_{1} & \lambda_{2} & \cdots & \lambda_{n} \end{array}) diag(λ1λ2λn) .

单位矩阵 对角矩阵 d i a g ( 1 1 ⋯ 1 ) \mathrm{diag}(\begin{array}{ccc} 1 & 1 & \cdots & 1 \end{array}) diag(111) 叫做 n 阶单位矩阵,简称单位阵,记作 E n \bm{E}_{n} En .

2.2 矩阵的运算

矩阵加法
A + B = ( a 11 a 12 ⋯ a 1 n a 21 a 22 ⋯ a 2 n ⋮ ⋮ ⋱ ⋮ a m 1 a m 2 ⋯ a m n ) + ( b 11 b 12 ⋯ b 1 n b 21 b 22 ⋯ b 2 n ⋮ ⋮ ⋱ ⋮ b m 1 b m 2 ⋯ b m n ) = ( a 11 + b 11 a 12 + b 12 ⋯ a 1 n + b 1 n a 21 + b 21 a 22 + b 22 ⋯ a 2 n + b 2 n ⋮ ⋮ ⋱ ⋮ a m 1 + b m 1 a m 2 + b m 2 ⋯ a m n + b m n ) \begin{align} \bm{A} + \bm{B} &= \begin{pmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{m1} & a_{m2} & \cdots & a_{mn} \\ \end{pmatrix} + \begin{pmatrix} b_{11} & b_{12} & \cdots & b_{1n} \\ b_{21} & b_{22} & \cdots & b_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ b_{m1} & b_{m2} & \cdots & b_{mn} \\ \end{pmatrix} \\ &= \begin{pmatrix} a_{11} + b_{11} & a_{12} + b_{12} & \cdots & a_{1n} + b_{1n} \\ a_{21} + b_{21} & a_{22} + b_{22} & \cdots & a_{2n} + b_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{m1} + b_{m1} & a_{m2} + b_{m2} & \cdots & a_{mn} + b_{mn} \\ \end{pmatrix} \\ \end{align} \\ A+B= a11a21am1a12a22am2a1na2namn + b11b21bm1b12b22bm2b1nb2nbmn = a11+b11a21+b21am1+bm1a12+b12a22+b22am2+bm2a1n+b1na2n+b2namn+bmn
矩阵加法满足:
A + B = B + A ( A + B ) + C = A + ( B + C ) \bm{A} + \bm{B} = \bm{B} + \bm{A} (\bm{A} + \bm{B}) + \bm{C} = \bm{A} + (\bm{B} + \bm{C}) A+B=B+A(A+B)+C=A+(B+C)
矩阵数乘
c A = c ( a 11 a 12 ⋯ a 1 n a 21 a 22 ⋯ a 2 n ⋮ ⋮ ⋱ ⋮ a m 1 a m 2 ⋯ a m n ) = ( c a 11 c a 12 ⋯ c a 1 n c a 21 c a 22 ⋯ c a 2 n ⋮ ⋮ ⋱ ⋮ c a m 1 c a m 2 ⋯ c a m n ) \begin{align} c\bm{A} &= c \begin{pmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{m1} & a_{m2} & \cdots & a_{mn} \\ \end{pmatrix} \\ &= \begin{pmatrix} ca_{11} & ca_{12} & \cdots & ca_{1n} \\ ca_{21} & ca_{22} & \cdots & ca_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ ca_{m1} & ca_{m2} & \cdots & ca_{mn} \\ \end{pmatrix} \\ \end{align} \\ cA=c a11a21am1a12a22am2a1na2namn = ca11ca21cam1ca12ca22cam2ca1nca2ncamn
矩阵数乘满足:
c A = A c ( λ μ ) A = λ ( μ A ) ( λ + μ ) A = λ A + μ A λ ( A + B ) = λ A + λ B c\bm{A} = \bm{A}c (\lambda\mu)\bm{A} = \lambda(\mu\bm{A}) (\lambda + \mu)\bm{A} = \lambda\bm{A} + \mu\bm{A} \lambda(\bm{A} + \bm{B})=\lambda\bm{A} + \lambda\bm{B} cA=Ac(λμ)A=λ(μA)(λ+μ)A=λA+μAλ(A+B)=λA+λB
矩阵乘法 对于 m × s m \times s m×s矩阵 A \bm{A} A s × n s \times n s×n矩阵 B \bm{B} B ,它们的乘法定义为 C = A B = ( c i j ) m × n \bm{C} = \bm{A}\bm{B} = (c_{ij})_{m \times n} C=AB=(cij)m×n ,且满足
c i j = ∑ k = 1 s a i k b k j ( i ∈ Z ≤ m , j ∈ Z ≤ n ) c_{ij} = \sum_{k = 1}^{s}a_{ik}b_{kj} ~~~~ (i \in \mathbb{Z} \leq m, j \in \mathbb{Z} \leq n) \\ cij=k=1saikbkj    (iZm,jZn)
矩阵乘法满足:
( A B ) C = A ( B C ) c ( A B ) = ( c A ) B = A ( c B ) A ( B + C ) = A B + A C ( B + C ) A = B A + C A (\bm{A}\bm{B})\bm{C} = \bm{A}(\bm{B}\bm{C}) c(\bm{A}\bm{B}) = (c\bm{A})\bm{B} = \bm{A}(c\bm{B}) \bm{A}(\bm{B} + \bm{C}) = \bm{A}\bm{B} + \bm{A}\bm{C} (\bm{B} + \bm{C})\bm{A} = \bm{B}\bm{A} + \bm{C}\bm{A} (AB)C=A(BC)c(AB)=(cA)B=A(cB)A(B+C)=AB+AC(B+C)A=BA+CA
需要注意的是,
A B ≠ B A ( B ≠ E ) . \bm{A}\bm{B} \ne \bm{B}\bm{A} ~~~~ (\bm{B} \ne \bm{E}) . AB=BA    (B=E).
矩阵转置 矩阵 A = ( a i j ) m × n \bm{A} = (a_{ij})_{m \times n} A=(aij)m×n的转置矩阵记作 A T \bm{A}^\mathrm{T} AT ,且满足
A T = ( a j i ) n × m \bm{A}^\mathrm{T} = (a_{ji})_{n \times m} \\ AT=(aji)n×m
矩阵转置满足:
( A T ) T = A ( A + B ) T = A T + B T ( λ A ) T = λ A T ( A B ) T = B T A T (\bm{A}^{T})^{T} = \bm{A} (\bm{A} + \bm{B})^\mathrm{T} = \bm{A}^\mathrm{T} + \bm{B}^\mathrm{T} (\lambda \bm{A})^\mathrm{T} = \lambda\bm{A}^\mathrm{T} (\bm{A}\bm{B})^\mathrm{T} =\bm{B}^\mathrm{T}\bm{A}^\mathrm{T} (AT)T=A(A+B)T=AT+BT(λA)T=λAT(AB)T=BTAT
方阵的行列式 由 n 阶方阵 A \bm{A} A的元素所构成的行列式,称为方阵 A \pmb{A} A 的行列式,记作 det ⁡ A \det\bm{A} detA ∣ A ∣ | \bm{A} | A

方阵的行列式满足:
∣ A T ∣ = ∣ A ∣ ∣ λ A ∣ = λ n ∣ A ∣ | \bm{A}^\mathrm{T} | = | \bm{A} | | \lambda\bm{A} | = \lambda^{n} | \bm{A} | AT=A∣∣λA=λnA
其中 n 为矩阵 A \bm{A} A的阶数
∣ A B ∣ = ∣ A ∣ ∣ B ∣ | \pmb{A}\bm{B} | = | \pmb{A} || \bm{B} | AB=A∣∣B

2.3 逆矩阵

伴随矩阵 行列式 | \bm{A} | 的各个元素的代数余子式 A_{ij} 所构成的如下的矩阵
A ∗ = ( A 11 A 21 ⋯ A n 1 A 12 A 22 ⋯ A n 2 ⋮ ⋮ ⋱ ⋮ A 1 n A 2 n ⋯ A n n ) \bm{A}^{*} = \begin{pmatrix} A_{11} & A_{21} & \cdots & A_{n1} \\ A_{12} & A_{22} & \cdots & A_{n2} \\ \vdots & \vdots & \ddots & \vdots \\ A_{1n} & A_{2n} & \cdots & A_{nn} \\ \end{pmatrix} \\ A= A11A12A1nA21A22A2nAn1An2Ann
称为矩阵 A \bm{A} A的伴随矩阵,简称伴随阵,记作 A ∗ \bm{A}^{*} A

矩阵 A \bm{A} A和它的伴随矩阵 A ∗ \bm{A}^{*} A 满足
A A ∗ = A ∗ A = ∣ A ∣ E \bm{A}\bm{A}^{*}=\bm{A}^{*}\bm{A}=|\bm{A}|\bm{E} \\ AA=AA=AE
逆矩阵 对于 n 阶矩阵 A \bm{A} A,如果有一个 n 阶矩阵 B \bm{B} B ,使得
A B = B A = E \bm{A}\bm{B} = \bm{B}\bm{A} = \bm{E} \\ AB=BA=E
则说矩阵 A \bm{A} A是可逆的,并把矩阵 B \bm{B} B称为矩阵 A \bm{A} A的逆矩阵,简称逆阵,记作 A − 1 \bm{A}^{-1} A1.

如果矩阵 A \bm{A} A是可逆的,那么 A \bm{A} A 的逆矩阵是惟一的。

矩阵 A \bm{A} A 可逆的充分必要条件是 ∣ A ∣ ≠ 0 | \bm{A} | \ne 0 A=0 。若 ∣ A ∣ ≠ 0 | \bm{A} | \ne 0 A=0,则
A − 1 = 1 ∣ A ∣ A ∗ \bm{A}^{-1} = \frac{1}{| \bm{A} |}\bm{A}^{*} \\ A1=A1A
逆矩阵满足:
( A − 1 ) − 1 = A ( λ A ) − 1 = λ − 1 A − 1 (\bm{A}^{-1})^{-1} = \bm{A} (\lambda \bm{A})^{-1} = \lambda^{-1}\bm{A}^{-1} (A1)1=A(λA)1=λ1A1
A \bm{A} A B \bm{B} B 为同阶矩阵且均可逆,则
( A B ) − 1 = B − 1 A − 1 (\bm{A}\bm{B})^{-1} = \bm{B}^{-1}\bm{A}^{-1} (AB)1=B1A1
奇异矩阵 不可逆矩阵叫做奇异矩阵。

非奇异矩阵 可逆矩阵叫做非奇异矩阵。

2.4 Cramer法则

Cramer法则 如果线性方程组
{ a 11 x 1 + a 12 x 2 + ⋯ = b 1 a 21 x 1 + a 22 x 2 + ⋯ = b 2 ⋯ ⋯ ⋯ ⋯ a n 1 x 1 + a n 2 x 2 + ⋯ = b n \begin{cases} a_{11}x_{1} + a_{12}x_{2} + \cdots = b_{1} \\ a_{21}x_{1} + a_{22}x_{2} + \cdots = b_{2} \\ \cdots\cdots\cdots\cdots \\ a_{n1}x_{1} + a_{n2}x_{2} + \cdots = b_{n} \\ \end{cases} \\ a11x1+a12x2+=b1a21x1+a22x2+=b2⋯⋯⋯⋯an1x1+an2x2+=bn
的系数矩阵 A 的行列式不等于零,即
∣ A ∣ = ∣ a 11 ⋯ a 1 n ⋮ ⋮ a n 1 ⋯ a n n ∣ ≠ 0 \left\lvert A \right\rvert = \begin{vmatrix} a_{11} & \cdots & a_{1n} \\ \vdots & & \vdots \\ a_{n1} & \cdots & a_{nn} \\ \end{vmatrix} \ne 0 \\ A= a11an1a1nann =0
则该方程组有惟一解
x i = ∣ A i ∣ ∣ A ∣ x_{i} = \frac{\left\lvert A_{i} \right\rvert}{\left\lvert A \right\rvert} \\ xi=AAi
其中
A i = ( a 11 ⋯ a 1 , i − 1 b 1 a 1 , i + 1 ⋯ a 1 n ⋮ ⋮ ⋮ ⋮ ⋮ a n 1 ⋯ a n , i − 1 b n a n , i + 1 ⋯ a n n ) A_{i} = \begin{pmatrix} a_{11} & \cdots & a_{1, i - 1} & b_{1} & a_{1, i + 1} & \cdots & a_{1n} \\ \vdots & & \vdots & \vdots & \vdots & & \vdots \\ a_{n1} & \cdots & a_{n, i - 1} & b_{n} & a_{n, i + 1} & \cdots & a_{nn} \\ \end{pmatrix} \\ Ai= a11an1a1,i1an,i1b1bna1,i+1an,i+1a1nann

相关文章:

高等数学:线性代数-第二章

文章目录 第2章 矩阵及其运算2.1 线性方程组和矩阵2.2 矩阵的运算2.3 逆矩阵2.4 Cramer法则 第2章 矩阵及其运算 2.1 线性方程组和矩阵 n \bm{n} n 元线性方程组 设有 n 个未知数 m 个方程的线性方程组 { a 11 x 1 a 12 x 2 ⋯ a 1 n x n b 1 a 21 x 1 a 22 x 2 ⋯ a …...

星戈瑞分析FITC-PEG-Alkyne的荧光特性和光谱特性

​欢迎来到星戈瑞荧光stargraydye!小编带您盘点: FITC-PEG-Alkyne的荧光特性和光谱特性是对其荧光性能进行分析的方面。以下是FITC-PEG-Alkyne的一些常见荧光特性和光谱特性: **1. 荧光激发波长:**FITC-PEG-Alkyne的荧光激发波长通…...

VB.NET调用VB6 Activex EXE实现PowerBasic和FreeBasic的标准DLL调用

VB6写的ActiveX EXE公共对象是外置进程,因此,尽管它是x86 32位的进程,但可以集成到 VB.NET的x64和x32程序中使用。 VS2022的VB.NET程序,调用ActiveX DLL对象我在上篇笔记中写了 VB.NET通过VB6 ActiveX DLL调用PowerBasic及FreeB…...

深入了解Unity的Physics类:一份详细的技术指南(七)(下篇)

接着上一篇深入了解Unity的Physics类(上篇),我们继续把Physics类剩余的属性和方法进行讲解 碰撞检测和忽略: (这些方法和属性涉及查询和处理物体之间的碰撞) Physics.CheckBox: 检查给定位置的盒子是否与任何碰撞器接触或者位于任何碰撞器内部。 Physics.CheckCapsu…...

C++入门:引用是什么

目录 1.引用的概念 2.引用的特征 3.常引用 4.引用使用场景 5.传值,传引用效率比较 6.引用与指针的区别 1.引用的概念 引用不是新定义一个变量,而是给已存在变量取了一个别名,编译器不会为引用变量开辟内存空 间,它和它引用…...

2023年人工智能与自动化控制国际学术会议(AIAC 2023)

2023年人工智能与自动化控制国际学术会议(AIAC 2023) The 2023 International Conference on Artificial Intelligence and Automation Control 2023年人工智能与自动化控制国际学术会议(AIAC 2023)将于2023年10月27-29日在中…...

分布式核心知识以及常见微服务框架

分布式中的远程调用 在微服务架构中,通常存在多个服务之间的远程调用的需求。远程调用通常包含两个部分:序列化和通信协议。常见的序列化协议包括json、xml、 hession、 protobuf、thrift、text、 bytes等,目前主流的远程调用技术有基于HTTP…...

Unity记录4.1-存储-根据关键字加载Tile

文章首发见博客:https://mwhls.top/4810.html。 无图/格式错误/后续更新请见首发页。 更多更新请到mwhls.top查看 欢迎留言提问或批评建议,私信不回。 汇总:Unity 记录 摘要:实现完 Tilemap 地图生成后,实现根据关键字…...

数据结构—树表的查找

7.3树表的查找 ​ 当表插入、删除操作频繁时,为维护表的有序表,需要移动表中很多记录。 ​ 改用动态查找表——几种特殊的树 ​ 表结构在查找过程中动态生成 ​ 对于给定值key ​ 若表中存在,则成功返回; ​ 否则&#xff0…...

微信小程序测试策略和注意事项?

一、测试前准备(环境搭建) 1、前端页面 微信 Web 开发者工具安装、授权测试用的微信号可预览和调试小程序 2、管理后台 配置内网测试服务器环境,通过 PC 端 Web 站点管理小程序前端的输出内容,可从开发人员获取管理账号进行测…...

VUE3封装EL-ELEMENT-PLUS input组件

VUE3封装EL-ELEMENT-PLUS input组件 完整代码 <template><div><div><div class"lable_top" v-if"label"><label :class"lable_sty">{{ label }}</label></div><el-inputv-model"inputValue&…...

RISC-V公测平台发布 · 在SG2042上配置Jupiter+Octave科学计算环境

简介 JupyterHub是一个开源的共享计算平台&#xff0c;它为每个用户管理一个单独的 Jupyter 环境&#xff0c; 可以用于学生班级、企业数据科学小组或科学研究小组。它是一个多用户中心&#xff0c;可以生成、管理和代理多个单用户Jupyter笔记本服务器的实例。 GNU Octave是一…...

初识Sentinel

目录 1.解决雪崩的方式有4种&#xff1a; 1.1.2超时处理&#xff1a; 1.1.3仓壁模式 1.1.4.断路器 1.1.5.限流 1.1.6.总结 1.2.服务保护技术对比 1.3.Sentinel介绍和安装 1.3.1.初识Sentinel 1.3.2.安装Sentinel 1.4.微服务整合Sentinel 2.流量控制 2.1.簇点链路 …...

【官方中文文档】Mybatis-Spring #注入映射器

注入映射器 与其在数据访问对象&#xff08;DAO&#xff09;中手工编写使用 SqlSessionDaoSupport 或 SqlSessionTemplate 的代码&#xff0c;还不如让 Mybatis-Spring 为你创建一个线程安全的映射器&#xff0c;这样你就可以直接注入到其它的 bean 中了&#xff1a; <bea…...

UG\NX 二次开发 相切面、相邻面的选择控件

文章作者:里海 来源网站:https://blog.csdn.net/WangPaiFeiXingYuan 简介: 有群友问“UFUN多选功能过滤面不能选择相切面或相邻面之类的吗?” 这个用Block UI的"面收集器"就可以,ufun函数是不行的。 效果: C++语言在UG二次开发中的应用及综合分析 C++ …...

Quartz任务调度框架介绍和使用

一、Quartz介绍 Quartz [kwɔːts] 是OpenSymphony开源组织在Job scheduling领域又一个开源项目&#xff0c;完全由Java开发&#xff0c;可以用来执行定时任务&#xff0c;类似于java.util.Timer。但是相较于Timer&#xff0c; Quartz增加了很多功能&#xff1a; 1.持久性作业 …...

drools8尝试

drools7升级到drools8有很大很大的变更.几乎不能说是一个项目了. 或者说就是名字相同的不同项目, 初看下来变化是这样 两个最关键的东西都retired了 https://docs.drools.org/8.42.0.Final/drools-docs/drools/migration-guide/index.html business central变成了一个VS code…...

【机器学习】python基础实现线性回归

手写梯度下降的实现ykxb的线性回归 算法步骤&#xff1a; &#xff08;1&#xff09;构造数据&#xff0c;y3*x5; &#xff08;2&#xff09;随机初始化和&#xff0c;任意数值&#xff0c;例如9,10; &#xff08;3&#xff09;计算&#xff0c;,并计算 &#xff08;4&…...

vue table合并行 动态列名

需求: 1.合并行,相同数据合并 2,根据后端返回数据动态显示列名, 我这个业务需求是,每年增加一列,也就是列名不是固定的,后端返回数据每年会多一条数据,根据返回数据显示列名 实现: html <el-table v-loading"loading" :data"dataList" :span-metho…...

Spring Cloud Alibaba-Nacos Discovery--服务治理

1 服务治理介绍 先来思考一个问题 通过上一章的操作&#xff0c;我们已经可以实现微服务之间的调用。但是我们把服务提供者的网络地址 &#xff08;ip&#xff0c;端口&#xff09;等硬编码到了代码中&#xff0c;这种做法存在许多问题&#xff1a; 一旦服务提供者地址变化&am…...

国防科技大学计算机基础课程笔记02信息编码

1.机内码和国标码 国标码就是我们非常熟悉的这个GB2312,但是因为都是16进制&#xff0c;因此这个了16进制的数据既可以翻译成为这个机器码&#xff0c;也可以翻译成为这个国标码&#xff0c;所以这个时候很容易会出现这个歧义的情况&#xff1b; 因此&#xff0c;我们的这个国…...

ffmpeg(四):滤镜命令

FFmpeg 的滤镜命令是用于音视频处理中的强大工具&#xff0c;可以完成剪裁、缩放、加水印、调色、合成、旋转、模糊、叠加字幕等复杂的操作。其核心语法格式一般如下&#xff1a; ffmpeg -i input.mp4 -vf "滤镜参数" output.mp4或者带音频滤镜&#xff1a; ffmpeg…...

css的定位(position)详解:相对定位 绝对定位 固定定位

在 CSS 中&#xff0c;元素的定位通过 position 属性控制&#xff0c;共有 5 种定位模式&#xff1a;static&#xff08;静态定位&#xff09;、relative&#xff08;相对定位&#xff09;、absolute&#xff08;绝对定位&#xff09;、fixed&#xff08;固定定位&#xff09;和…...

ArcGIS Pro制作水平横向图例+多级标注

今天介绍下载ArcGIS Pro中如何设置水平横向图例。 之前我们介绍了ArcGIS的横向图例制作&#xff1a;ArcGIS横向、多列图例、顺序重排、符号居中、批量更改图例符号等等&#xff08;ArcGIS出图图例8大技巧&#xff09;&#xff0c;那这次我们看看ArcGIS Pro如何更加快捷的操作。…...

pikachu靶场通关笔记22-1 SQL注入05-1-insert注入(报错法)

目录 一、SQL注入 二、insert注入 三、报错型注入 四、updatexml函数 五、源码审计 六、insert渗透实战 1、渗透准备 2、获取数据库名database 3、获取表名table 4、获取列名column 5、获取字段 本系列为通过《pikachu靶场通关笔记》的SQL注入关卡(共10关&#xff0…...

MySQL用户和授权

开放MySQL白名单 可以通过iptables-save命令确认对应客户端ip是否可以访问MySQL服务&#xff1a; test: # iptables-save | grep 3306 -A mp_srv_whitelist -s 172.16.14.102/32 -p tcp -m tcp --dport 3306 -j ACCEPT -A mp_srv_whitelist -s 172.16.4.16/32 -p tcp -m tcp -…...

Linux --进程控制

本文从以下五个方面来初步认识进程控制&#xff1a; 目录 进程创建 进程终止 进程等待 进程替换 模拟实现一个微型shell 进程创建 在Linux系统中我们可以在一个进程使用系统调用fork()来创建子进程&#xff0c;创建出来的进程就是子进程&#xff0c;原来的进程为父进程。…...

Unsafe Fileupload篇补充-木马的详细教程与木马分享(中国蚁剑方式)

在之前的皮卡丘靶场第九期Unsafe Fileupload篇中我们学习了木马的原理并且学了一个简单的木马文件 本期内容是为了更好的为大家解释木马&#xff08;服务器方面的&#xff09;的原理&#xff0c;连接&#xff0c;以及各种木马及连接工具的分享 文件木马&#xff1a;https://w…...

智能AI电话机器人系统的识别能力现状与发展水平

一、引言 随着人工智能技术的飞速发展&#xff0c;AI电话机器人系统已经从简单的自动应答工具演变为具备复杂交互能力的智能助手。这类系统结合了语音识别、自然语言处理、情感计算和机器学习等多项前沿技术&#xff0c;在客户服务、营销推广、信息查询等领域发挥着越来越重要…...

初探Service服务发现机制

1.Service简介 Service是将运行在一组Pod上的应用程序发布为网络服务的抽象方法。 主要功能&#xff1a;服务发现和负载均衡。 Service类型的包括ClusterIP类型、NodePort类型、LoadBalancer类型、ExternalName类型 2.Endpoints简介 Endpoints是一种Kubernetes资源&#xf…...