当前位置: 首页 > news >正文

深入浅出Pytorch函数——torch.nn.init.xavier_uniform_

分类目录:《深入浅出Pytorch函数》总目录
相关文章:
· 深入浅出Pytorch函数——torch.nn.init.calculate_gain
· 深入浅出Pytorch函数——torch.nn.init.uniform_
· 深入浅出Pytorch函数——torch.nn.init.normal_
· 深入浅出Pytorch函数——torch.nn.init.constant_
· 深入浅出Pytorch函数——torch.nn.init.ones_
· 深入浅出Pytorch函数——torch.nn.init.zeros_
· 深入浅出Pytorch函数——torch.nn.init.eye_
· 深入浅出Pytorch函数——torch.nn.init.dirac_
· 深入浅出Pytorch函数——torch.nn.init.xavier_uniform_
· 深入浅出Pytorch函数——torch.nn.init.xavier_normal_
· 深入浅出Pytorch函数——torch.nn.init.kaiming_uniform_
· 深入浅出Pytorch函数——torch.nn.init.kaiming_normal_
· 深入浅出Pytorch函数——torch.nn.init.trunc_normal_
· 深入浅出Pytorch函数——torch.nn.init.orthogonal_
· 深入浅出Pytorch函数——torch.nn.init.sparse_


torch.nn.init模块中的所有函数都用于初始化神经网络参数,因此它们都在torc.no_grad()模式下运行,autograd不会将其考虑在内。

根据Glorot, X.和Bengio, Y.在《Understanding the difficulty of training deep feedforward neural networks》中描述的方法,用一个均匀分布生成值,填充输入的张量或变量。结果张量中的值采样自 U ( − a , a ) U(-a, a) U(a,a),其中:
a = gain × 6 fan_in + fan_put a=\text{gain}\times\sqrt{\frac{6}{\text{fan\_in}+\text{fan\_put}}} a=gain×fan_in+fan_put6

这种方法也被称为Glorot initialization。

语法

torch.nn.init.xavier_uniform_(tensor, gain=1)

参数

  • tensor:[Tensor] 一个 N N N维张量torch.Tensor
  • gain :[float] 可选的缩放因子

返回值

一个torch.Tensor且参数tensor也会更新

实例

w = torch.empty(3, 5)
nn.init.xavier_uniform_(w, gain=nn.init.calculate_gain('relu'))

函数实现

def xavier_uniform_(tensor: Tensor, gain: float = 1.) -> Tensor:r"""Fills the input `Tensor` with values according to the methoddescribed in `Understanding the difficulty of training deep feedforwardneural networks` - Glorot, X. & Bengio, Y. (2010), using a uniformdistribution. The resulting tensor will have values sampled from:math:`\mathcal{U}(-a, a)` where.. math::a = \text{gain} \times \sqrt{\frac{6}{\text{fan\_in} + \text{fan\_out}}}Also known as Glorot initialization.Args:tensor: an n-dimensional `torch.Tensor`gain: an optional scaling factorExamples:>>> w = torch.empty(3, 5)>>> nn.init.xavier_uniform_(w, gain=nn.init.calculate_gain('relu'))"""fan_in, fan_out = _calculate_fan_in_and_fan_out(tensor)std = gain * math.sqrt(2.0 / float(fan_in + fan_out))a = math.sqrt(3.0) * std  # Calculate uniform bounds from standard deviationreturn _no_grad_uniform_(tensor, -a, a)

相关文章:

深入浅出Pytorch函数——torch.nn.init.xavier_uniform_

分类目录:《深入浅出Pytorch函数》总目录 相关文章: 深入浅出Pytorch函数——torch.nn.init.calculate_gain 深入浅出Pytorch函数——torch.nn.init.uniform_ 深入浅出Pytorch函数——torch.nn.init.normal_ 深入浅出Pytorch函数——torch.nn.init.c…...

优橙内推安徽专场——5G网络优化(中高级)工程师

可加入就业QQ群:801549240 联系老师内推简历投递邮箱:hrictyc.com 内推公司1:浙江省邮电工程建设有限公司 内推公司2:北京宜通华瑞科技有限公司 内推公司3:浙江明讯网络技术有限公司 浙江省邮电工程建设有限公司 …...

2023年计算机设计大赛国三 数据可视化 (源码可分享)

2023年暑假参加了全国大学生计算机设计大赛,并获得了国家三等奖(国赛答辩出了点小插曲)。在此分享和记录本次比赛的经验。 目录 一、作品简介二、作品效果图三、设计思路四、项目特色 一、作品简介 本项目实现对农产品近期发展、电商销售、灾…...

工业生产全面感知!工业感知云来了

面向工业企业数字化转型需求,天翼物联基于感知云平台创新能力和5G工业物联数采能力,为客户提供工业感知云服务,包括工业泛协议接入、感知云工业超轻数采平台、工业感知数据治理、工业数据看板四大服务,构建工业感知神经系统新型数…...

Lnton羚通关于Optimization在【PyTorch】中的基础知识

OPTIMIZING MODEL PARAMETERS (模型参数优化) 现在我们有了模型和数据,是时候通过优化数据上的参数来训练了,验证和测试我们的模型。训练一个模型是一个迭代的过程,在每次迭代中,模型会对输出进行猜测&…...

冒泡排序算法

//version 1 void bubblesort(vector<int>& nums){int n=nums.size();for(int i...

无人机航管应答机 ping200XR

产品概述 ping200XR是一个完整的系统&#xff0c;旨在满足航管应答器和自动相关监视广播(ADS-B)的要求&#xff0c;在管制空域操作无人航空系统(UAS)。该系统完全可配置为模式A&#xff0c;模式C&#xff0c;模式S转发器和扩展ADS-B发射机的任何组合。ping200XR包括一个精度超…...

oracle归档日志满了导致启动不起来解决

oracle启动不起来解决 原因&#xff1a;闪回归档区的空间满了 [oraclepre-oracle ~]$ sqlplus / as sysdbaSQL*Plus: Release 11.2.0.4.0 Production on Tue Aug 22 14:48:50 2023Copyright (c) 1982, 2013, Oracle. All rights reserved.Connected to: Oracle Database 11g…...

高等数学:线性代数-第二章

文章目录 第2章 矩阵及其运算2.1 线性方程组和矩阵2.2 矩阵的运算2.3 逆矩阵2.4 Cramer法则 第2章 矩阵及其运算 2.1 线性方程组和矩阵 n \bm{n} n 元线性方程组 设有 n 个未知数 m 个方程的线性方程组 { a 11 x 1 a 12 x 2 ⋯ a 1 n x n b 1 a 21 x 1 a 22 x 2 ⋯ a …...

星戈瑞分析FITC-PEG-Alkyne的荧光特性和光谱特性

​欢迎来到星戈瑞荧光stargraydye&#xff01;小编带您盘点&#xff1a; FITC-PEG-Alkyne的荧光特性和光谱特性是对其荧光性能进行分析的方面。以下是FITC-PEG-Alkyne的一些常见荧光特性和光谱特性&#xff1a; **1. 荧光激发波长&#xff1a;**FITC-PEG-Alkyne的荧光激发波长通…...

VB.NET调用VB6 Activex EXE实现PowerBasic和FreeBasic的标准DLL调用

VB6写的ActiveX EXE公共对象是外置进程&#xff0c;因此&#xff0c;尽管它是x86 32位的进程&#xff0c;但可以集成到 VB.NET的x64和x32程序中使用。 VS2022的VB.NET程序&#xff0c;调用ActiveX DLL对象我在上篇笔记中写了 VB.NET通过VB6 ActiveX DLL调用PowerBasic及FreeB…...

深入了解Unity的Physics类:一份详细的技术指南(七)(下篇)

接着上一篇深入了解Unity的Physics类(上篇)&#xff0c;我们继续把Physics类剩余的属性和方法进行讲解 碰撞检测和忽略: (这些方法和属性涉及查询和处理物体之间的碰撞) Physics.CheckBox: 检查给定位置的盒子是否与任何碰撞器接触或者位于任何碰撞器内部。 Physics.CheckCapsu…...

C++入门:引用是什么

目录 1.引用的概念 2.引用的特征 3.常引用 4.引用使用场景 5.传值&#xff0c;传引用效率比较 6.引用与指针的区别 1.引用的概念 引用不是新定义一个变量&#xff0c;而是给已存在变量取了一个别名&#xff0c;编译器不会为引用变量开辟内存空 间&#xff0c;它和它引用…...

2023年人工智能与自动化控制国际学术会议(AIAC 2023)

2023年人工智能与自动化控制国际学术会议&#xff08;AIAC 2023&#xff09; The 2023 International Conference on Artificial Intelligence and Automation Control 2023年人工智能与自动化控制国际学术会议&#xff08;AIAC 2023&#xff09;将于2023年10月27-29日在中…...

分布式核心知识以及常见微服务框架

分布式中的远程调用 在微服务架构中&#xff0c;通常存在多个服务之间的远程调用的需求。远程调用通常包含两个部分&#xff1a;序列化和通信协议。常见的序列化协议包括json、xml、 hession、 protobuf、thrift、text、 bytes等&#xff0c;目前主流的远程调用技术有基于HTTP…...

Unity记录4.1-存储-根据关键字加载Tile

文章首发见博客&#xff1a;https://mwhls.top/4810.html。 无图/格式错误/后续更新请见首发页。 更多更新请到mwhls.top查看 欢迎留言提问或批评建议&#xff0c;私信不回。 汇总&#xff1a;Unity 记录 摘要&#xff1a;实现完 Tilemap 地图生成后&#xff0c;实现根据关键字…...

数据结构—树表的查找

7.3树表的查找 ​ 当表插入、删除操作频繁时&#xff0c;为维护表的有序表&#xff0c;需要移动表中很多记录。 ​ 改用动态查找表——几种特殊的树 ​ 表结构在查找过程中动态生成 ​ 对于给定值key ​ 若表中存在&#xff0c;则成功返回&#xff1b; ​ 否则&#xff0…...

微信小程序测试策略和注意事项?

一、测试前准备&#xff08;环境搭建&#xff09; 1、前端页面 微信 Web 开发者工具安装、授权测试用的微信号可预览和调试小程序 2、管理后台 配置内网测试服务器环境&#xff0c;通过 PC 端 Web 站点管理小程序前端的输出内容&#xff0c;可从开发人员获取管理账号进行测…...

VUE3封装EL-ELEMENT-PLUS input组件

VUE3封装EL-ELEMENT-PLUS input组件 完整代码 <template><div><div><div class"lable_top" v-if"label"><label :class"lable_sty">{{ label }}</label></div><el-inputv-model"inputValue&…...

RISC-V公测平台发布 · 在SG2042上配置Jupiter+Octave科学计算环境

简介 JupyterHub是一个开源的共享计算平台&#xff0c;它为每个用户管理一个单独的 Jupyter 环境&#xff0c; 可以用于学生班级、企业数据科学小组或科学研究小组。它是一个多用户中心&#xff0c;可以生成、管理和代理多个单用户Jupyter笔记本服务器的实例。 GNU Octave是一…...

rknn优化教程(二)

文章目录 1. 前述2. 三方库的封装2.1 xrepo中的库2.2 xrepo之外的库2.2.1 opencv2.2.2 rknnrt2.2.3 spdlog 3. rknn_engine库 1. 前述 OK&#xff0c;开始写第二篇的内容了。这篇博客主要能写一下&#xff1a; 如何给一些三方库按照xmake方式进行封装&#xff0c;供调用如何按…...

循环冗余码校验CRC码 算法步骤+详细实例计算

通信过程&#xff1a;&#xff08;白话解释&#xff09; 我们将原始待发送的消息称为 M M M&#xff0c;依据发送接收消息双方约定的生成多项式 G ( x ) G(x) G(x)&#xff08;意思就是 G &#xff08; x ) G&#xff08;x) G&#xff08;x) 是已知的&#xff09;&#xff0…...

【位运算】消失的两个数字(hard)

消失的两个数字&#xff08;hard&#xff09; 题⽬描述&#xff1a;解法&#xff08;位运算&#xff09;&#xff1a;Java 算法代码&#xff1a;更简便代码 题⽬链接&#xff1a;⾯试题 17.19. 消失的两个数字 题⽬描述&#xff1a; 给定⼀个数组&#xff0c;包含从 1 到 N 所有…...

Linux简单的操作

ls ls 查看当前目录 ll 查看详细内容 ls -a 查看所有的内容 ls --help 查看方法文档 pwd pwd 查看当前路径 cd cd 转路径 cd .. 转上一级路径 cd 名 转换路径 …...

C++ 基础特性深度解析

目录 引言 一、命名空间&#xff08;namespace&#xff09; C 中的命名空间​ 与 C 语言的对比​ 二、缺省参数​ C 中的缺省参数​ 与 C 语言的对比​ 三、引用&#xff08;reference&#xff09;​ C 中的引用​ 与 C 语言的对比​ 四、inline&#xff08;内联函数…...

【JavaWeb】Docker项目部署

引言 之前学习了Linux操作系统的常见命令&#xff0c;在Linux上安装软件&#xff0c;以及如何在Linux上部署一个单体项目&#xff0c;大多数同学都会有相同的感受&#xff0c;那就是麻烦。 核心体现在三点&#xff1a; 命令太多了&#xff0c;记不住 软件安装包名字复杂&…...

是否存在路径(FIFOBB算法)

题目描述 一个具有 n 个顶点e条边的无向图&#xff0c;该图顶点的编号依次为0到n-1且不存在顶点与自身相连的边。请使用FIFOBB算法编写程序&#xff0c;确定是否存在从顶点 source到顶点 destination的路径。 输入 第一行两个整数&#xff0c;分别表示n 和 e 的值&#xff08;1…...

【数据分析】R版IntelliGenes用于生物标志物发现的可解释机器学习

禁止商业或二改转载&#xff0c;仅供自学使用&#xff0c;侵权必究&#xff0c;如需截取部分内容请后台联系作者! 文章目录 介绍流程步骤1. 输入数据2. 特征选择3. 模型训练4. I-Genes 评分计算5. 输出结果 IntelliGenesR 安装包1. 特征选择2. 模型训练和评估3. I-Genes 评分计…...

Linux离线(zip方式)安装docker

目录 基础信息操作系统信息docker信息 安装实例安装步骤示例 遇到的问题问题1&#xff1a;修改默认工作路径启动失败问题2 找不到对应组 基础信息 操作系统信息 OS版本&#xff1a;CentOS 7 64位 内核版本&#xff1a;3.10.0 相关命令&#xff1a; uname -rcat /etc/os-rele…...

基于 TAPD 进行项目管理

起因 自己写了个小工具&#xff0c;仓库用的Github。之前在用markdown进行需求管理&#xff0c;现在随着功能的增加&#xff0c;感觉有点难以管理了&#xff0c;所以用TAPD这个工具进行需求、Bug管理。 操作流程 注册 TAPD&#xff0c;需要提供一个企业名新建一个项目&#…...