当前位置: 首页 > news >正文

怎么检测UI卡顿?(线上及线下)

什么是UI卡顿?

在Android系统中,我们知道UI线程负责我们所有视图的布局,渲染工作,UI在更新期间,如果UI线程的执行时间超过16ms,则会产生丢帧的现象,而大量的丢帧就会造成卡顿,影响用户体验。

UI卡顿产生的原因?

  • 在UI线程中做了大量的耗时操作,导致了UI刷新工作的阻塞。
  • 系统CPU资源紧张,APP所能分配的时间片减少。
  • Ardroid虚拟机频繁的执行GC操作,导致占用了大量的系统资源,同时也会导致UI线程的短暂停顿,从而产生卡顿。
  • 代码编写不当,产生了过度绘制,导致CPU执行时间变长,早场卡顿。

从上可知,大部分的卡顿原因都产生于代码编写不当导致,而这类问题都可以通过各种优化方案进行优化,所以我们需要做的就是尽可能准确的找到卡顿的原因,定位到准确的代码模块,最好是能定位到哪个方法导致卡顿,这样我们APP的性能就能得到很大的提升。

UI卡顿方案

  • 开发阶段

在开发阶段我们可以借助开发工具为我们提供的各种便利来有效的识别卡顿,如下:

System Trace

具体使用可以看blog.csdn.net/u011578734/… 写的文章。

Android CPU Profiler

  • Android Studio CPU 性能剖析器可实时检查应用的 CPU 使用率和线程活动。你还可以检查方法跟踪记录、函数跟踪记录和系统跟踪记录中的详细信息。
  • 使用CPU profiler可以查看主线程中,每个方法的耗时情况,以及每个方法的调用栈,可以很方便的分析卡顿产生的原因,以及定位到具体的代码方法。

具体使用方法可以参考 blog.csdn.net/u011578734/…

线上UI卡顿检测方案

线上检测方案比较流行的是BlockCanary和WatchDog,下面我们就看看它们是怎么做到检测UI卡顿的并反馈给开发人员。

BlockCanary

  • BlockCanary能检测到主线程的卡顿, 并将结果记录下来, 以友好的方式展示,很类似于LeakCanary的展示。

BlockCanary的使用很简单,只要在Application中进行设置一下就可以如下:

BlockCanary.install(this, new AppBlockCanaryContext()).start();
  • AppBlockCanaryContext继承自BlockCanaryContext是对BlockCanary中各个参数进行配置的类

可配置参数如下:

//卡顿阀值
int getConfigBlockThreshold();
boolean isNeedDisplay();
String getQualifier();
String getUid();
String getNetworkType();
Context getContext();
String getLogPath();
boolean zipLogFile(File[] src, File dest);
//可将卡顿日志上传到自己的服务
void uploadLogFile(File zippedFile);
String getStackFoldPrefix();
int getConfigDumpIntervalMillis();
  • 在某个消息执行时间超过设定的标准时会弹出通知进行提醒,或者上传。

原理

熟悉Android的Handler机制的同学一定知道,Handler中重要的组成部分,looper,并且应用的主线程只有一个Looper存在,不管有多少handler,最后都会回到这里。 我们注意到Looper.loop()中有这么一段代码:

public static void loop() {...for (;;) {...// This must be in a local variable, in case a UI event sets the loggerPrinter logging = me.mLogging;if (logging != null) {logging.println(">>>>> Dispatching to " + msg.target + " " +msg.callback + ": " + msg.what);}msg.target.dispatchMessage(msg);if (logging != null) {logging.println("<<<<< Finished to " + msg.target + " " + msg.callback);}...}
}

注意到两个很关键的地方是logging.println(">>>>> Dispatching to " + msg.target + " " + msg.callback + ": " + msg.what);logging.println("<<<<< Finished to " + msg.target + " " + msg.callback);这两行代码,它调用的时机正好在dispatchMessage(msg)的前后,而主线程卡也就是在dispatchMessage(msg)卡住了。

BlockCanary的流程图

blockcanary_flow.png

BlockCanary就是通过替换系统的Printer来增加了一些我们想要的堆栈信息,从而满足我们的需求。

替换原有的Printer是通过以下方法:

Looper.getMainLooper().setMessageLogging(mainLooperPrinter);

并在mainLooperPrinter中判断start和end,来获取主线程dispatch该message的开始和结束时间,并判定该时间超过阈值(如2000毫秒)为主线程卡慢发生,并dump出各种信息,提供开发者分析性能瓶颈。如下所示:

@Override
public void println(String x) {if (!mStartedPrinting) {mStartTimeMillis = System.currentTimeMillis();mStartThreadTimeMillis = SystemClock.currentThreadTimeMillis();mStartedPrinting = true;startDump();} else {final long endTime = System.currentTimeMillis();mStartedPrinting = false;if (isBlock(endTime)) {notifyBlockEvent(endTime);}stopDump();}
}private boolean isBlock(long endTime) {return endTime - mStartTimeMillis > mBlockThresholdMillis;
}
  • BlockCanary dump的信息包括如下:
基本信息:安装包标示、机型、api等级、uid、CPU内核数、进程名、内存、版本号等
耗时信息:实际耗时、主线程时钟耗时、卡顿开始时间和结束时间
CPU信息:时间段内CPU是否忙,时间段内的系统CPU/应用CPU占比,I/O占CPU使用率
堆栈信息:发生卡慢前的最近堆栈,可以用来帮助定位卡慢发生的地方和重现路径
  • 获取系统状态信息是通过如下代码实现:
threadStackSampler = new ThreadStackSampler(Looper.getMainLooper().getThread(),sBlockCanaryContext.getConfigDumpIntervalMillis());
cpuSampler = new CpuSampler(sBlockCanaryContext.getConfigDumpIntervalMillis());

下面看一下ThreadStackSampler是怎么工作的?

protected void doSample() {
//        Log.d("BlockCanary", "sample thread stack: [" + mThreadStackEntries.size() + ", " + mMaxEntryCount + "]");StringBuilder stringBuilder = new StringBuilder();// Fetch thread stack infofor (StackTraceElement stackTraceElement : mThread.getStackTrace()) {stringBuilder.append(stackTraceElement.toString()).append(Block.SEPARATOR);}// Eliminate obsolete entrysynchronized (mThreadStackEntries) {if (mThreadStackEntries.size() == mMaxEntryCount && mMaxEntryCount > 0) {mThreadStackEntries.remove(mThreadStackEntries.keySet().iterator().next());}mThreadStackEntries.put(System.currentTimeMillis(), stringBuilder.toString());}
}

直接去拿主线程的栈信息, 每半秒去拿一次, 记录下来, 如果发生卡顿就显之显示出来 拿CPU的信息较麻烦, 从/proc/stat下面拿实时的CPU状态, 再从/proc/" + mPid + "/stat中读取进程时间, 再计算各CPU时间占比和CPU的工作状态.

基于系统WatchDog原理来实现

  • 启动一个卡顿检测线程,该线程定期的向UI线程发送一条延迟消息,执行一个标志位加1的操作,如果规定时间内,标志位没有变化,则表示产生了卡顿。如果发生了变化,则代表没有长时间卡顿,我们重新执行延迟消息即可。
public class WatchDog {private final static String TAG = "budaye";//一个标志private static final int TICK_INIT_VALUE = 0;private volatile int mTick = TICK_INIT_VALUE;//任务执行间隔public final int DELAY_TIME = 4000;//UI线程Handler对象private Handler mHandler = new Handler(Looper.getMainLooper());//性能监控线程private HandlerThread mWatchDogThread = new HandlerThread("WatchDogThread");//性能监控线程Handler对象private Handler mWatchDogHandler;//定期执行的任务private Runnable mDogRunnable = new Runnable() {@Overridepublic void run() {if (null == mHandler) {Log.e(TAG, "handler is null");return;}mHandler.post(new Runnable() {@Overridepublic void run() {//UI线程中执行mTick++;}});try {//线程休眠时间为检测任务的时间间隔Thread.sleep(DELAY_TIME);} catch (InterruptedException e) {e.printStackTrace();}//当mTick没有自增时,表示产生了卡顿,这时打印UI线程的堆栈if (TICK_INIT_VALUE == mTick) {StringBuilder sb = new StringBuilder();//打印堆栈信息StackTraceElement[] stackTrace = Looper.getMainLooper().getThread().getStackTrace();for (StackTraceElement s : stackTrace) {sb.append(s.toString() + "\n");}Log.d(TAG, sb.toString());} else {mTick = TICK_INIT_VALUE;}mWatchDogHandler.postDelayed(mDogRunnable, DELAY_TIME);}};/*** 卡顿监控工作start方法*/public void startWork(){mWatchDogThread.start();mWatchDogHandler = new Handler(mWatchDogThread.getLooper());mWatchDogHandler.postDelayed(mDogRunnable, DELAY_TIME);}
}
  • 调用startWork即可开启卡顿检测。

为了帮助到大家更好的全面清晰的掌握好性能优化,准备了相关的核心笔记(还该底层逻辑):https://qr18.cn/FVlo89

性能优化核心笔记:https://qr18.cn/FVlo89

启动优化

内存优化

UI优化

网络优化

Bitmap优化与图片压缩优化https://qr18.cn/FVlo89

多线程并发优化与数据传输效率优化

体积包优化

《Android 性能监控框架》:https://qr18.cn/FVlo89

《Android Framework学习手册》:https://qr18.cn/AQpN4J

  1. 开机Init 进程
  2. 开机启动 Zygote 进程
  3. 开机启动 SystemServer 进程
  4. Binder 驱动
  5. AMS 的启动过程
  6. PMS 的启动过程
  7. Launcher 的启动过程
  8. Android 四大组件
  9. Android 系统服务 - Input 事件的分发过程
  10. Android 底层渲染 - 屏幕刷新机制源码分析
  11. Android 源码分析实战

相关文章:

怎么检测UI卡顿?(线上及线下)

什么是UI卡顿&#xff1f; 在Android系统中&#xff0c;我们知道UI线程负责我们所有视图的布局&#xff0c;渲染工作&#xff0c;UI在更新期间&#xff0c;如果UI线程的执行时间超过16ms&#xff0c;则会产生丢帧的现象&#xff0c;而大量的丢帧就会造成卡顿&#xff0c;影响用…...

Git 常用操作

一、Git 常用操作 1、切换分支 git checkout命令可以用于三种不同的实体&#xff1a;文件&#xff0c;commit&#xff0c;以及分支。checkout的意思就是对于一种实体的不同版本之间进行切换的操作。checkout一个分支&#xff0c;会更新当前的工作空间中的文件&#xff0c;使其…...

前端修改新增操作导致数据删除——js精度丢失

问题描述 笔者在写前端渲染表格的时候&#xff0c;发现无论是修改还是新增&#xff0c;数据都会被删除。检查了前端逻辑并与后端联调均无问题。 然后就开始和后端一起对数据库&#xff0c;结果发现&#xff0c;十几位的id&#xff0c;接收过来的时候&#xff0c;尾数均变为了…...

winform使用usercontrol 构建了一个复杂的列表,列表速度慢该如何优化?

当使用 WinForms 构建复杂的列表时&#xff0c;可能会面临性能问题&#xff0c;特别是在数据量大或 UI 复杂的情况下。以下是一些优化策略&#xff0c;可以帮助您改善列表的性能&#xff1a; 1. **虚拟模式 (Virtual Mode)**&#xff1a;对于大型数据集&#xff0c;考虑使用虚…...

Lnton羚通算法算力云平台如何在OpenCV-Python中使用cvui库创建复选框

CVUI 之 复选框 Python import numpy as np import cv2 import cvuidef checkbox_test():WINDOW_NAME Checkbox-Testchecked [False]# 创建画布frame np.zeros((300, 400, 3), np.uint8)# 初始化窗口cvui.init(WINDOW_NAME)while True:# 画布填色frame[:] (100, 200, 100…...

中项系统集成项目管理知识点汇总

中项系统集成项目管理知识点汇总 一、成本-进度二、十大管理及47个过程三、质量四、人力资源五、风险六、干系人沟通七、案例分析万能答案八、选择题知识点九、十大管理输入输出工具技术总结十大管理工具技术总结 一、成本-进度 针对进度滞后的绩效情况 /缩短工期&#xff0c;可…...

Docker容器:docker基础及网络

Docker容器&#xff1a;docker基础及安装 一.docker容器概述 1.什么是容器 &#xff08;1&#xff09;Docker是在Linux容器里运行应用的开源工具&#xff0c;是一种轻量级的“虚拟机”。 &#xff08;2&#xff09;是一个开源的应用容器引擎&#xff0c;基于go语言开发并遵…...

Django实现音乐网站 ⑿

使用Python Django框架制作一个音乐网站&#xff0c; 本篇主要是加载静态资源和推荐页-轮播图、推荐歌单功能开发。 目录 加载静态资源 引入jquery.js 引入bootstrap资源文件 创建基类模板样式文件 推荐页开发 轮播图开发 下载 加载swiper 自定义引入继承块设置 使用…...

ORB-SLAM2学习笔记10之图像关键帧KeyFrame

文章目录 0 引言1 KeyFrame类1.1 构造函数1.2 成员函数1.3 关键帧之间共视图1.3.1 AddConnection1.3.2 UpdateBestCovisibles1.3.3 UpdateConnections1.3.4 EraseConnection1.3.5 SetBadFlag 1.4 地图点1.5 生成树 2 KeyFrame用途 0 引言 ORB-SLAM2学习笔记7详细了解了System主…...

【ownCloud】添加信任域

在我进行使用mysql:5.6和 owncloud 镜像&#xff0c;构建一个个人网盘后 我的虚拟机更改了ip地址导致出现下列状况 报错&#xff1a;您正在访问来自不信任域名的服务器。 please contact your administrator. if you are an administrator of this instance, configure the &q…...

C++--类型转换

1.什么是类型转换 在传统C语言中&#xff0c;由强制类型转换和隐式类型转换&#xff0c;隐式类型转换&#xff0c;编译器在在编译阶段自动处理&#xff0c;能转换则转换&#xff0c;强制类型转换由用户自己转换。 缺陷&#xff1a; 转换的可视性比较差&#xff0c;所有的转换形…...

在服务器上部署 Nginx 并设置图片服务器

问题&#xff1a;我要指定/home/images专门存放图片&#xff01;该怎么做&#xff0c;而且我的系统是centos8系统&#xff0c;只有一个root用户&#xff0c;用root用户已经安装了nginx 答案&#xff1a; 既然你使用了 CentOS 8&#xff0c;并且你想使用 /home/images 目录存放…...

使用NXP GUI GUIDER生成的GUI移植到雅特力MCU平台过程详解(ST/GD/国民/极海通用)

好记性不如烂笔头&#xff0c;既然不够聪明&#xff0c;就乖乖的做笔记&#xff0c;温故而知新。 本文档用于本人对知识点的梳理和记录 一、前言 上一篇我们有介绍NXP GUI Guider工具如何制作和调试GUI&#xff0c;GUI神器 NXP GUI GUIDER开发工具入门教程https://blog.csdn.n…...

JVM——配置常用参数,GC调优策略

文章目录 JVM 配置常用参数Java内存区域常见配置参数概览堆参数回收器参数项目中常用配置常用组合 常用 GC 调优策略GC 调优原则GC 调优目的GC 调优策略 JVM 配置常用参数 Java内存区域常见配置参数概览堆参数&#xff1b;回收器参数&#xff1b;项目中常用配置&#xff1b;常…...

使用IDEA把Java程序打包成jar

点击左上角File,选择Project Structure 左侧选中Artifacts,点击右侧的号 选择JAR->From modules with dependencies 选择你要运行的main方法所在的类,选好了点击OK Artifacts添加完成后点击右下角OK 在工具栏中找到Build,选择Build Artifacts 刚才创建好的Artifacts,选择Bui…...

元宇宙和数字孪生的异同探究

元宇宙和数字孪生&#xff0c;作为两个备受瞩目的概念&#xff0c;都在不同领域引起了巨大的关注。虽然它们都涉及数字化世界的构建&#xff0c;但元宇宙和数字孪生在概念、应用和影响方面存在一些异同点。 相似之处&#xff1a; 数字表示&#xff1a; 元宇宙和数字孪生都依赖…...

初识微服务

我们在曾经最常见的就是所谓的单体架构&#xff0c;但是由于网民越来越多&#xff0c;单体架构已经逐渐的被淘汰出去&#xff0c;所以我们在单体架构的基础上提出了微服务&#xff0c;它提倡将单一应用程序划分成一组小的服务&#xff0c;服务之间互相协调、互相配合&#xff0…...

数据库锁的分类 各种锁

锁的一个分类 数据库中的锁前言分享链接个人总结全局锁&#xff1a;表级锁行级锁&#xff1a; 数据库中的锁 前言 C支持并发有锁&#xff0c;Linux里面也有锁机制&#xff0c;数据库也有锁&#xff0c;什么互斥锁&#xff0c;表级锁&#xff0c;间隙锁&#xff0c;好多…&…...

MySQL数据库软件

MySQL数据库软件的详细知识介绍: 1. 存储引擎 MySQL支持多种存储引擎,如InnoDB、MyISAM等。不同引擎有各自的特点,InnoDB支持事务、行锁,MyISAM支持全文索引等。 2. 索引结构 MySQL索引主要有B树索引、哈希索引、全文索引等。这些索引通过不同的数据结构加速查找效率。 3. …...

无涯教程-PHP - preg_match_all()函数

preg_match_all() - 语法 int preg_match_all (string pattern, string string, array pattern_array [, int order]); preg_match_all()函数匹配字符串中所有出现的模式。 它将按照您使用可选输入参数order指定的顺序将这些匹配项放置在pattern_array数组中。有两种可能的类…...

LBE-LEX系列工业语音播放器|预警播报器|喇叭蜂鸣器的上位机配置操作说明

LBE-LEX系列工业语音播放器|预警播报器|喇叭蜂鸣器专为工业环境精心打造&#xff0c;完美适配AGV和无人叉车。同时&#xff0c;集成以太网与语音合成技术&#xff0c;为各类高级系统&#xff08;如MES、调度系统、库位管理、立库等&#xff09;提供高效便捷的语音交互体验。 L…...

【JavaEE】-- HTTP

1. HTTP是什么&#xff1f; HTTP&#xff08;全称为"超文本传输协议"&#xff09;是一种应用非常广泛的应用层协议&#xff0c;HTTP是基于TCP协议的一种应用层协议。 应用层协议&#xff1a;是计算机网络协议栈中最高层的协议&#xff0c;它定义了运行在不同主机上…...

阿里云ACP云计算备考笔记 (5)——弹性伸缩

目录 第一章 概述 第二章 弹性伸缩简介 1、弹性伸缩 2、垂直伸缩 3、优势 4、应用场景 ① 无规律的业务量波动 ② 有规律的业务量波动 ③ 无明显业务量波动 ④ 混合型业务 ⑤ 消息通知 ⑥ 生命周期挂钩 ⑦ 自定义方式 ⑧ 滚的升级 5、使用限制 第三章 主要定义 …...

《通信之道——从微积分到 5G》读书总结

第1章 绪 论 1.1 这是一本什么样的书 通信技术&#xff0c;说到底就是数学。 那些最基础、最本质的部分。 1.2 什么是通信 通信 发送方 接收方 承载信息的信号 解调出其中承载的信息 信息在发送方那里被加工成信号&#xff08;调制&#xff09; 把信息从信号中抽取出来&am…...

Spring AI与Spring Modulith核心技术解析

Spring AI核心架构解析 Spring AI&#xff08;https://spring.io/projects/spring-ai&#xff09;作为Spring生态中的AI集成框架&#xff0c;其核心设计理念是通过模块化架构降低AI应用的开发复杂度。与Python生态中的LangChain/LlamaIndex等工具类似&#xff0c;但特别为多语…...

【生成模型】视频生成论文调研

工作清单 上游应用方向&#xff1a;控制、速度、时长、高动态、多主体驱动 类型工作基础模型WAN / WAN-VACE / HunyuanVideo控制条件轨迹控制ATI~镜头控制ReCamMaster~多主体驱动Phantom~音频驱动Let Them Talk: Audio-Driven Multi-Person Conversational Video Generation速…...

HarmonyOS运动开发:如何用mpchart绘制运动配速图表

##鸿蒙核心技术##运动开发##Sensor Service Kit&#xff08;传感器服务&#xff09;# 前言 在运动类应用中&#xff0c;运动数据的可视化是提升用户体验的重要环节。通过直观的图表展示运动过程中的关键数据&#xff0c;如配速、距离、卡路里消耗等&#xff0c;用户可以更清晰…...

AI病理诊断七剑下天山,医疗未来触手可及

一、病理诊断困局&#xff1a;刀尖上的医学艺术 1.1 金标准背后的隐痛 病理诊断被誉为"诊断的诊断"&#xff0c;医生需通过显微镜观察组织切片&#xff0c;在细胞迷宫中捕捉癌变信号。某省病理质控报告显示&#xff0c;基层医院误诊率达12%-15%&#xff0c;专家会诊…...

【分享】推荐一些办公小工具

1、PDF 在线转换 https://smallpdf.com/cn/pdf-tools 推荐理由&#xff1a;大部分的转换软件需要收费&#xff0c;要么功能不齐全&#xff0c;而开会员又用不了几次浪费钱&#xff0c;借用别人的又不安全。 这个网站它不需要登录或下载安装。而且提供的免费功能就能满足日常…...

如何更改默认 Crontab 编辑器 ?

在 Linux 领域中&#xff0c;crontab 是您可能经常遇到的一个术语。这个实用程序在类 unix 操作系统上可用&#xff0c;用于调度在预定义时间和间隔自动执行的任务。这对管理员和高级用户非常有益&#xff0c;允许他们自动执行各种系统任务。 编辑 Crontab 文件通常使用文本编…...