Unity 之 Transform.Translate 实现局部坐标系中进行平移操作的方法
文章目录
- Translate 默认使用局部坐标
- 也可以转换成世界坐标

Translate 默认使用局部坐标
在Unity中,Transform.Translate是用于在游戏对象的局部坐标系中进行平移操作的方法。这意味着它将游戏对象沿着其自身的轴进行移动,而不是世界坐标轴。这在实现物体移动、相机跟随、用户交互等方面非常有用。
以下是一个使用Translate方法的示例代码,附带详细的注释:
using UnityEngine;public class TranslateExample : MonoBehaviour
{public float speed = 5f; // 移动速度private void Update(){// 获取用户输入的方向float horizontalInput = Input.GetAxis("Horizontal");float verticalInput = Input.GetAxis("Vertical");// 计算移动方向Vector3 moveDirection = new Vector3(horizontalInput, 0f, verticalInput);// 使用 Translate 方法进行平移transform.Translate(moveDirection * speed * Time.deltaTime);// 注意:在 Update 方法中使用 Translate 会导致每帧移动,所以速度乘以 Time.deltaTime 以平衡不同帧率下的速度。}
}
在这个示例中,我们:
- 获取用户输入的方向(水平和垂直)。
- 创建一个表示移动方向的向量。
- 使用
Translate方法将游戏对象沿着其自身的轴进行平移。乘以speed和Time.deltaTime以平衡不同帧率下的速度。
需要注意的是,Translate 方法会修改游戏对象的位置,但它不会受到物理引擎的影响,因此可能不适合用于需要物理交互的情况。此外,Translate 方法是在游戏对象的 Transform 组件上调用的,所以您需要确保对象具有 Transform 组件。
也可以转换成世界坐标
对于世界坐标系的平移,您可以使用Transform.position属性来进行操作,例如:
using UnityEngine;public class TranslateWorldExample : MonoBehaviour
{public float speed = 5f; // 移动速度private void Update(){// 获取用户输入的方向float horizontalInput = Input.GetAxis("Horizontal");float verticalInput = Input.GetAxis("Vertical");// 计算移动方向Vector3 moveDirection = new Vector3(horizontalInput, 0f, verticalInput);// 使用世界坐标系进行平移transform.position += moveDirection * speed * Time.deltaTime;}
}
相关文章:
Unity 之 Transform.Translate 实现局部坐标系中进行平移操作的方法
文章目录 Translate 默认使用局部坐标也可以转换成世界坐标 Translate 默认使用局部坐标 在Unity中,Transform.Translate是用于在游戏对象的局部坐标系中进行平移操作的方法。这意味着它将游戏对象沿着其自身的轴进行移动,而不是世界坐标轴。这在实现物…...
PostgreSQL Error: sorry, too many clients already
Error PG的默认最大连接数是100. 如果超过100就会报错sorry, too many clients already Find show max_connections; SELECT COUNT(*) from pg_stat_activity; SELECT * FROM pg_stat_activity;Solution 提高最大连接数 ALTER SYSTEM SET max_connections 然后重启pg查看…...
Vue2(路由)
目录 一,路由原理(hash)二,路由安装和使用(vue2)三,路由跳转四,路由的传参和取值五,嵌套路由六,路由守卫最后 一,路由原理(hash&#…...
中介者模式-协调多个对象之间的交互
在深圳租房市场,有着许多的“二房东”,房主委托他们将房子租出去,而租客想要租房的话,也是和“二房东”沟通,租房期间有任何问题,找二房东解决。对于房主来说,委托给“二房东”可太省事了&#…...
Python框架【自定义过滤器、自定义数据替换过滤器 、自定义时间过滤器、选择结构、选择练习、循环结构、循环练习、导入宏方式 】(三)
👏作者简介:大家好,我是爱敲代码的小王,CSDN博客博主,Python小白 📕系列专栏:python入门到实战、Python爬虫开发、Python办公自动化、Python数据分析、Python前后端开发 📧如果文章知识点有错误…...
红黑树遍历与Redis存储
引言 在计算机科学领域,红黑树(Red-Black Tree)是一种自平衡的二叉查找树,它能在O(log n)的时间复杂度内完成插入、删除和查找操作。由于其高效性和可预测性的性能,红黑树在许多领域都得到广泛应用。本文将重点介绍红…...
前端处理图片文件的方法
在项目开发过程中,有一个需求,需要前端对上传的图片进行处理,以字符串的形式传给后端,实现效果如下: 1.上传图片的组件 在该项目中,使用了element plus组件库 <el-uploadv-model:file-list"fileL…...
「Java」《深入解析Java多线程编程利器:CompletableFuture》
《深入解析Java多线程编程利器:CompletableFuture》 一、 引言1. 对多线程编程的需求和挑战的介绍2. 介绍CompletableFuture的作用和优势 二. CompletableFuture简介1. CompletableFuture是Java中提供的一个强大的多线程编程工具2. 与传统的Thread和Runnable相比的优…...
Docker容器与虚拟化技术:容器运行时说明与比较
目录 一、理论 1.容器运行时 2.容器运行时接口 3.容器运行时层级 4.容器运行时比较 5.强隔离容器 二、问题 1.K8S为何难以实现真正的多租户 三、总结 一、理论 1.容器运行时 (1)概念 Container Runtime 是运行于 k8s 集群每个节点中ÿ…...
vue导出文件流获取附件名称并下载(在response.headers里解析filename导出)
导出文件流下载,拦截器统一处理配置 需求以往实现的方法(各自的业务层写方法)现在实现的方法(axios里拦截器统一配置处理)把文章链接复制粘贴给后端,让大佬自己赏阅。 需求 之前实现的导出都是各自的业务层…...
山东省图书馆典藏《乡村振兴战略下传统村落文化旅游设计》鲁图中大许少辉博士八一新书
山东省图书馆《乡村振兴战略下传统村落文化旅游设计》鲁图中大许少辉博士八一新书...
2023-08-19力扣每日一题-水题/位运算解法
链接: 2235. 两整数相加 题意: ab 解: ab 补一个位运算写法,进位是(a&b)<<1,不进位的计算结果为a^b 实际代码: #include<iostream> using namespace std; int sum(int num1, int n…...
Hadoop学习:深入解析MapReduce的大数据魔力之数据压缩(四)
Hadoop学习:深入解析MapReduce的大数据魔力之数据压缩(四) 4.1 概述1)压缩的好处和坏处2)压缩原则 4.2 MR 支持的压缩编码4.3 压缩方式选择4.3.1 Gzip 压缩4.3.2 Bzip2 压缩4.3.3 Lzo 压缩4.3.4 Snappy 压缩4.3.5 压缩…...
LRU淘汰策略执行过程
1 介绍 Redis无论是惰性删除还是定期删除,都可能存在删除不尽的情况,无法删除完全,比如每次删除完过期的 key 还是超过 25%,且这些 key 再也不会被客户端访问。 这样的话,定期删除和堕性删除可能都彻底的清理掉。如果…...
Kotlin 高阶函数详解
高阶函数 在 Kotlin 中,函数是一等公民,高阶函数是 Kotlin 的一大难点,如果高阶函数不懂的话,那么要学习 Kotlin 中的协程、阅读 Kotlin 的源码是非常难的,因为源码中有太多高阶函数了。 高阶函数的定义 高阶函数的…...
DL——week2
要学明白的知识点: np.dot()的作用 两个数组的点积,即对应元素相乘 numpy.dot(a,b,outNone) a: ndarray 数组 b: ndarray 数组 out: ndarray, 可选,用来保存dot()的计算结果 numpy Ndarray对象 N维数组对象ndarray&am…...
如何撰写骨灰级博士论文?这是史上最全博士论文指导!
博士论文的写作是博士研究生主要要完成的工作。由于存在着较高的难度,较长的写作周期,以及在创新,写作规范,实际及理论意义等方面有着比较高的要求,博士论文的完成一般说来是有相当难度的。一篇好的博士论文不仅是一本…...
08.SpringBoot请求相应
文章目录 1 请求1.1 Postman1.2 简单参数1.2.1 原始方式1.2.2 SpringBoot方式1.2.3 参数名不一致 1.3 实体参数1.3.1 简单实体对象1.3.2 复杂实体对象 1.4 数组集合参数1.4.1 数组1.4.2 集合 1.5 日期参数1.6 JSON参数1.7 路径参数 2 响应2.1 ResponseBody注解2.2 统一响应结果…...
C#详解-Contains、StartsWith、EndsWith、Indexof、lastdexof
目录 简介: 过程: 举例1.1 举例1.2 总结: 简介: 在C#中Contains、StarsWith和EndWith、IndexOf都是字符串函数。 1.Contains函数用于判断一个字符串是否包含指定的子字符串,返回一个布尔值(True或False)。 2.StartsWith函数用于判断一…...
FATE框架中pipline基础教程
目录 1. 用pipline上传数据2. 用 Pipeline 进行 Hetero SecureBoost 的训练和预测3. 用 Pipeline 构建神经网络模型3.1 Homo-NN Quick Start: A Binary Classification Task3.2 Hetero-NN Quick Start: A Binary Classification Task 4. 自定义数据集示例:实现一个简…...
UE5 学习系列(二)用户操作界面及介绍
这篇博客是 UE5 学习系列博客的第二篇,在第一篇的基础上展开这篇内容。博客参考的 B 站视频资料和第一篇的链接如下: 【Note】:如果你已经完成安装等操作,可以只执行第一篇博客中 2. 新建一个空白游戏项目 章节操作,重…...
[特殊字符] 智能合约中的数据是如何在区块链中保持一致的?
🧠 智能合约中的数据是如何在区块链中保持一致的? 为什么所有区块链节点都能得出相同结果?合约调用这么复杂,状态真能保持一致吗?本篇带你从底层视角理解“状态一致性”的真相。 一、智能合约的数据存储在哪里…...
华为云AI开发平台ModelArts
华为云ModelArts:重塑AI开发流程的“智能引擎”与“创新加速器”! 在人工智能浪潮席卷全球的2025年,企业拥抱AI的意愿空前高涨,但技术门槛高、流程复杂、资源投入巨大的现实,却让许多创新构想止步于实验室。数据科学家…...
2025年能源电力系统与流体力学国际会议 (EPSFD 2025)
2025年能源电力系统与流体力学国际会议(EPSFD 2025)将于本年度在美丽的杭州盛大召开。作为全球能源、电力系统以及流体力学领域的顶级盛会,EPSFD 2025旨在为来自世界各地的科学家、工程师和研究人员提供一个展示最新研究成果、分享实践经验及…...
django filter 统计数量 按属性去重
在Django中,如果你想要根据某个属性对查询集进行去重并统计数量,你可以使用values()方法配合annotate()方法来实现。这里有两种常见的方法来完成这个需求: 方法1:使用annotate()和Count 假设你有一个模型Item,并且你想…...
spring:实例工厂方法获取bean
spring处理使用静态工厂方法获取bean实例,也可以通过实例工厂方法获取bean实例。 实例工厂方法步骤如下: 定义实例工厂类(Java代码),定义实例工厂(xml),定义调用实例工厂ÿ…...
根据万维钢·精英日课6的内容,使用AI(2025)可以参考以下方法:
根据万维钢精英日课6的内容,使用AI(2025)可以参考以下方法: 四个洞见 模型已经比人聪明:以ChatGPT o3为代表的AI非常强大,能运用高级理论解释道理、引用最新学术论文,生成对顶尖科学家都有用的…...
今日学习:Spring线程池|并发修改异常|链路丢失|登录续期|VIP过期策略|数值类缓存
文章目录 优雅版线程池ThreadPoolTaskExecutor和ThreadPoolTaskExecutor的装饰器并发修改异常并发修改异常简介实现机制设计原因及意义 使用线程池造成的链路丢失问题线程池导致的链路丢失问题发生原因 常见解决方法更好的解决方法设计精妙之处 登录续期登录续期常见实现方式特…...
智能AI电话机器人系统的识别能力现状与发展水平
一、引言 随着人工智能技术的飞速发展,AI电话机器人系统已经从简单的自动应答工具演变为具备复杂交互能力的智能助手。这类系统结合了语音识别、自然语言处理、情感计算和机器学习等多项前沿技术,在客户服务、营销推广、信息查询等领域发挥着越来越重要…...
【VLNs篇】07:NavRL—在动态环境中学习安全飞行
项目内容论文标题NavRL: 在动态环境中学习安全飞行 (NavRL: Learning Safe Flight in Dynamic Environments)核心问题解决无人机在包含静态和动态障碍物的复杂环境中进行安全、高效自主导航的挑战,克服传统方法和现有强化学习方法的局限性。核心算法基于近端策略优化…...
