当前位置: 首页 > news >正文

【图像分割】理论篇(2)经典图像分割网络基于vgg16的Unet

UNet 是一种用于图像分割任务的深度学习架构,最早由 Olaf Ronneberger、Philipp Fischer 和 Thomas Brox 在2015年的论文 "U-Net: Convolutional Networks for Biomedical Image Segmentation" 中提出。UNet 在医学图像分割等领域取得了显著的成功,但也可以用于其他图像分割任务。

UNet 的核心思想是将编码器和解码器结合在一起,形成一个 U 字形的网络结构。编码器部分用于逐渐减少空间分辨率和提取高级特征,而解码器部分则逐渐恢复分辨率并生成与输入图像相同大小的分割结果。UNet 的设计使得它能够在较小的数据集上有效地训练,并且在医学图像等领域中表现优异。

一、整体网络构架 

二、网络实现细节

 

三、代码实现

import torch
import torch.nn as nn
import torch.nn.functional as F
from torchvision.models import vgg16class unetUp(nn.Module):def __init__(self, in_size, out_size):super(unetUp, self).__init__()self.conv1 = nn.Conv2d(in_size, out_size, kernel_size=3, padding=1)self.conv2 = nn.Conv2d(out_size, out_size, kernel_size=3, padding=1)self.up = nn.UpsamplingBilinear2d(scale_factor=2)def forward(self, inputs1, inputs2):outputs = torch.cat([inputs1, self.up(inputs2)], 1)outputs = self.conv1(outputs)outputs = self.conv2(outputs)return outputsclass Unet(nn.Module):def __init__(self, num_classes=2, in_channels=3, pretrained=False):super(Unet, self).__init__()self.vgg = vgg16(pretrained=pretrained)# self.vgg=self.vgg.featuresin_filters = [192, 384, 768, 1024]out_filters = [64, 128, 256, 512]# upsamplingself.up_concat4 = unetUp(in_filters[3], out_filters[3])self.up_concat3 = unetUp(in_filters[2], out_filters[2])self.up_concat2 = unetUp(in_filters[1], out_filters[1])self.up_concat1 = unetUp(in_filters[0], out_filters[0])# final conv (without any concat)self.final = nn.Conv2d(out_filters[0], num_classes, 1)def forward(self, inputs):feat1 = self.vgg.features[:4](inputs)feat2 = self.vgg.features[4:9](feat1)feat3 = self.vgg.features[9:16](feat2)feat4 = self.vgg.features[16:23](feat3)feat5 = self.vgg.features[23:-1](feat4)up4 = self.up_concat4(feat4, feat5)up3 = self.up_concat3(feat3, up4)up2 = self.up_concat2(feat2, up3)up1 = self.up_concat1(feat1, up2)final = self.final(up1)return finaldef _initialize_weights(self, *stages):for modules in stages:for module in modules.modules():if isinstance(module, nn.Conv2d):nn.init.kaiming_normal_(module.weight)if module.bias is not None:module.bias.data.zero_()elif isinstance(module, nn.BatchNorm2d):module.weight.data.fill_(1)module.bias.data.zero_()if __name__=="__main__":model=Unet()# model=model.cuda()image=torch.randn((1,3,512,512))# image=image.cuda()print(model(image))output=model(image)print(output.size())print(model)

相关文章:

【图像分割】理论篇(2)经典图像分割网络基于vgg16的Unet

UNet 是一种用于图像分割任务的深度学习架构,最早由 Olaf Ronneberger、Philipp Fischer 和 Thomas Brox 在2015年的论文 "U-Net: Convolutional Networks for Biomedical Image Segmentation" 中提出。UNet 在医学图像分割等领域取得了显著的成功&#x…...

vue插入重复的html内容

vue添加重复的html内容是通过绑定一个数组来v-for循环实现的。 效果展示: 首先创建数组,里面为重复内容的数量,里面默认存在一个初始值。 然后通过v-for来绑定这个数组,循环数据。 通过添加点击事件,来增加或删除数组…...

计算机网络-物理层(三)-信道的极限容量

计算机网络-物理层(三)-信道的极限容量 当信号在信道中传输失真不严重时,在信道的输出端,这些信号可以被识别 当信号在信道中,传输失真严重时,在信道的输出端就难以识别 造成失真的因素 码元传输速率信号传输距离噪声干扰传输媒…...

Http/Websocket协议的长连接和短连接的错误认识详细解读(史上最通俗)

从一个问题聊起: Http/Websocket 都称为一种协议,能用现实中的例子来解释协议吗? AI 举例: 您(客户端): 您坐在餐厅桌子上,想点一份菜单。 服务员(服务器&#xff09…...

两两交换链表中的节点

你存在,我深深的脑海里~ 题目: 示例: 思路: 这个题有点类似于反转一个单链表,不同的地方在于这个题不全反转,所以我们不同的地方在于此题多用了一个prve指针保存n1的前一个节点,以及头的改变&a…...

HTTP与RPC的取舍

HTTP与RPC的取舍 HTTP和RPC都是常用的网络通信协议,它们各有优劣。选择何种协议,主要取决于应用的需求和场景。 HTTP和RPC都有各自的优点和缺点,首先我们对两种协议进行一个总结。 HTTP协议图 HTTP的优点: 广泛的支持&#xff1…...

微前端学习(上)

一、课程目标 微前端概念;现有方案利弊;Single-spa实现原理;掌握使用qiankun搭建微应用;二、课程大纲 微前端背景现在web应用面临的问题微前端的价值微前端应用具备哪些能力微前端解决方案有哪些基于qiankun的实践1、微前端背景 2014年: Martin Fowler和James Lewis共同提…...

【Axure视频教程】标签版多选下拉列表

今天教大家在Axure里如何制作标签版多选下拉列表的原型模板,该模板用中继器制作,制作完成后使用也方便,只需要在中继器表格里维护选项信息,即可自动生成交互效果,包括显示隐藏选项列表,选中和取消选中选项&…...

Sharepoint2013必备软件安装路径

SP2013是最后一个有foundation版本的,后续各个版本都是server版,要买lisence。免费的可以用,但安装组件有些链接已经失效了,自己手动下载的路径备份一下,已经下载好的完整版,在文章最后可以直接下载&#x…...

C++day4(关系运算符的重载)

关系运算符重载的作用&#xff1a;可以让两个自定义类型对象进行对比操作。 代码实现关系运算符的重载&#xff1a; #include <iostream>using namespace std;class Person {// friend const Person operator(const Person &L, const Person &R); private:int …...

农业水价综合改革系统主要组成

一、系统概述 农业水价改革灌区信息化系统主要由感知采集层、网络传输层、系统应用层等部分组成。通过无线技术、感知层技术与新型应用的有效结合&#xff0c;可以用于各种业务的传送&#xff0c;充分满足灌区监测站间的物与物互联&#xff0c;农业生产的自动化和信息化相结合。…...

使用批处理文件(.bat)启动多个CMD窗口并执行命令

由于每次启动本机的mongodb和kafka&#xff0c;都需要进入相关目录进行启动&#xff0c;操作相对繁琐&#xff0c;于是想起了批处理来帮忙一键启动。 在桌面新建一个txt文件&#xff0c;改后缀名为.bat&#xff0c;并加上下面的代码。 cd /d D:\env-java\mongodb-win32-x86_64…...

开源项目-会议室预约管理系统

哈喽,大家好,今天给大家带来一个开源项目-会议室管理系统。项目基于SpringBoot+VUE开发。 会议室管理系统主要分为 前台会议室预约管理系统 和 会议室后台管理系统 两部分 前台会议室预约管理系统主要有申请会议室,预约进程,查看历史会议三部分 后台管理系统主要有会议室…...

Flask路由注册route的几种方式

前言 Flask路由注册的三种方式&#xff1a; app.routeapp.add_url_rule蓝图 app.route&#xff08;添加变量&#xff09; from flask import Flaskapp Flask(__name__) app.config.from_pyfile(config/base_setting.py) app.route("/") def hello():return "…...

Elasticsearch 查询之Function Score Query

前言 ES 的主查询评分模式分为两种&#xff0c;是信息检索领域的重要算法&#xff1a; TF-IDF 算法 和 BM25 算法。 Elasticsearch 从版本 5.0 开始引入了 BM25 算法作为默认的文档评分&#xff08;relevance scoring&#xff09;算法。在此之前&#xff0c;Elasticsearch 使…...

【3D激光SLAM】LOAM源代码解析--scanRegistration.cpp

系列文章目录 【3D激光SLAM】LOAM源代码解析–scanRegistration.cpp 【3D激光SLAM】LOAM源代码解析–laserOdometry.cpp 【3D激光SLAM】LOAM源代码解析–laserMapping.cpp 【3D激光SLAM】LOAM源代码解析–transformMaintenance.cpp 写在前面 本系列文章将对LOAM源代码进行讲解…...

解锁ChatGLM-6B的潜力:优化大语言模型训练,突破任务困难与答案解析难题

解锁ChatGLM-6B的潜力&#xff1a;优化大语言模型训练&#xff0c;突破任务困难与答案解析难题 LLM&#xff08;Large Language Model&#xff09;通常拥有大量的先验知识&#xff0c;使得其在许多自然语言处理任务上都有着不错的性能。 但&#xff0c;想要直接利用 LLM 完成…...

Apipost:提升API开发效率的利器

在数字化时代&#xff0c;API已经成为企业和开发者实现业务互通的关键工具。然而&#xff0c;API的开发、调试、文档编写以及测试等工作繁琐且复杂。Apipost为这一问题提供了完美的解决方案。 Apipost是一款专为API开发人员设计的协同研发平台&#xff0c;旨在简化API的生命周…...

论文解读:Image-Adaptive YOLO for Object Detection in Adverse Weather Conditions

发布时间&#xff1a;2022.4.4 (2021发布&#xff0c;进过多次修订) 论文地址&#xff1a;https://arxiv.org/pdf/2112.08088.pdf 项目地址&#xff1a;https://github.com/wenyyu/Image-Adaptive-YOLO 虽然基于深度学习的目标检测方法在传统数据集上取得了很好的结果&#xf…...

springboot 基于JAVA的动漫周边商城的设计与实现64n21

动漫周边商城分为二个模块&#xff0c;分别是管理员功能模块和用户功能模块。管理员功能模块包括&#xff1a;文章资讯、文章类型、动漫活动、动漫商品功能&#xff0c;用户功能模块包括&#xff1a;文章资讯、动漫活动、动漫商品、购物车&#xff0c;传统的管理方式对时间、地…...

浅谈 React Hooks

React Hooks 是 React 16.8 引入的一组 API&#xff0c;用于在函数组件中使用 state 和其他 React 特性&#xff08;例如生命周期方法、context 等&#xff09;。Hooks 通过简洁的函数接口&#xff0c;解决了状态与 UI 的高度解耦&#xff0c;通过函数式编程范式实现更灵活 Rea…...

DockerHub与私有镜像仓库在容器化中的应用与管理

哈喽&#xff0c;大家好&#xff0c;我是左手python&#xff01; Docker Hub的应用与管理 Docker Hub的基本概念与使用方法 Docker Hub是Docker官方提供的一个公共镜像仓库&#xff0c;用户可以在其中找到各种操作系统、软件和应用的镜像。开发者可以通过Docker Hub轻松获取所…...

理解 MCP 工作流:使用 Ollama 和 LangChain 构建本地 MCP 客户端

&#x1f31f; 什么是 MCP&#xff1f; 模型控制协议 (MCP) 是一种创新的协议&#xff0c;旨在无缝连接 AI 模型与应用程序。 MCP 是一个开源协议&#xff0c;它标准化了我们的 LLM 应用程序连接所需工具和数据源并与之协作的方式。 可以把它想象成你的 AI 模型 和想要使用它…...

【Go】3、Go语言进阶与依赖管理

前言 本系列文章参考自稀土掘金上的 【字节内部课】公开课&#xff0c;做自我学习总结整理。 Go语言并发编程 Go语言原生支持并发编程&#xff0c;它的核心机制是 Goroutine 协程、Channel 通道&#xff0c;并基于CSP&#xff08;Communicating Sequential Processes&#xff0…...

Cloudflare 从 Nginx 到 Pingora:性能、效率与安全的全面升级

在互联网的快速发展中&#xff0c;高性能、高效率和高安全性的网络服务成为了各大互联网基础设施提供商的核心追求。Cloudflare 作为全球领先的互联网安全和基础设施公司&#xff0c;近期做出了一个重大技术决策&#xff1a;弃用长期使用的 Nginx&#xff0c;转而采用其内部开发…...

招商蛇口 | 执笔CID,启幕低密生活新境

作为中国城市生长的力量&#xff0c;招商蛇口以“美好生活承载者”为使命&#xff0c;深耕全球111座城市&#xff0c;以央企担当匠造时代理想人居。从深圳湾的开拓基因到西安高新CID的战略落子&#xff0c;招商蛇口始终与城市发展同频共振&#xff0c;以建筑诠释对土地与生活的…...

【p2p、分布式,区块链笔记 MESH】Bluetooth蓝牙通信 BLE Mesh协议的拓扑结构 定向转发机制

目录 节点的功能承载层&#xff08;GATT/Adv&#xff09;局限性&#xff1a; 拓扑关系定向转发机制定向转发意义 CG 节点的功能 节点的功能由节点支持的特性和功能决定。所有节点都能够发送和接收网格消息。节点还可以选择支持一个或多个附加功能&#xff0c;如 Configuration …...

前端中slice和splic的区别

1. slice slice 用于从数组中提取一部分元素&#xff0c;返回一个新的数组。 特点&#xff1a; 不修改原数组&#xff1a;slice 不会改变原数组&#xff0c;而是返回一个新的数组。提取数组的部分&#xff1a;slice 会根据指定的开始索引和结束索引提取数组的一部分。不包含…...

软件工程 期末复习

瀑布模型&#xff1a;计划 螺旋模型&#xff1a;风险低 原型模型: 用户反馈 喷泉模型:代码复用 高内聚 低耦合&#xff1a;模块内部功能紧密 模块之间依赖程度小 高内聚&#xff1a;指的是一个模块内部的功能应该紧密相关。换句话说&#xff0c;一个模块应当只实现单一的功能…...

Android写一个捕获全局异常的工具类

项目开发和实际运行过程中难免会遇到异常发生&#xff0c;系统提供了一个可以捕获全局异常的工具Uncaughtexceptionhandler&#xff0c;它是Thread的子类&#xff08;就是package java.lang;里线程的Thread&#xff09;。本文将利用它将设备信息、报错信息以及错误的发生时间都…...