ubuntu18.04复现yolo v8环境配置之CUDA与pytorch版本问题以及多CUDA版本安装及切换
最近在复现yolo v8的程序,特记录一下过程
环境:ubuntu18.04+ros melodic
小知识:GPU并行计算能力高于CPU—B站UP主说的
Ubuntu可以安装多个版本的CUDA。如果某个程序的Pyorch需要不同版本的CUDA,不必删除之前的CUDA,可以实现多版本的CUDA切换
一、查看当前PyTorch使用的CUDA版本:
python -c "import torch; print(torch.version.cuda)"
注意:sudo ln -sf libcudnn.so.8.0.5 libcudnn.so.8
1.需要进入conda环境
2.进入conda环境命令:
conda activate ****
3.查看conda环境命令:
conda env list
4.卸载指定conda环境:
conda remove -n 需要删除的环境名 --all
5.创建conda环境:
conda create -n [your_env_name] python=[X.X](2.7、3.6等)
#eg:conda create -n django_env python=3.6
二、假设ubuntu系统已经安装了CUDA,此时需要重新安装另外一个版本(如果你是第一次安装CUDA也没关系,重复下面步骤两次,选择不同的CUDA版本即可)。进入cuda官网,选择需要的版本。
原因:为什么如此麻烦下载多个版本的CUDA呢?因此我们在复现别人代码时,都会看到类似的要求:
Pip install the ultralytics package including all requirements in a Python>=3.8 environment with PyTorch>=1.8.
不同程序需要不同版本的python和pytorch,而pytorch和CUDA之间有一定的对应关系,如果不按要求安装,会造成后续报错,无法复现他人的程序。pytorch和CUDA的对应关系网站:
https://pytorch.org/get-started/previous-versions/
CUDA官网下载:https://developer.nvidia.com/cuda-toolkit
注意:官网页面显示的是最新版本的cuda,点击Resources中的Archive of Previous CUDA Releases,选择之前的版本,例如我这里选择的是CUDA Toolkit 11.1.1 (October 2020), Versioned Online Documentation
点击CUDA Toolkit 11.1.1即可
按照下图进行选择Linux—x86_64—Ubuntu—18.04—runfile(local)
下载方法可以参考我另外一篇博客:ubuntu系统配置CUDA和cuDNN
大致流程如下
安装:复制https://developer.download.nvidia.com/compute/cuda/11.1.1/local_installers/cuda_11.1.1_455.32.00_linux.run
到另外一个网页进行下载。
使用如下命令安装
sudo sh cuda_11.1.1_455.32.00_linux.run
后面的步骤为:
1. Q:Existing package manager installation of the driver found. It is strongly │
│ recommended that you remove this before continuing. │
│ Abort │
│ Continue
A:Continu2. Q:Do you accept the previously read EULA?(accept/decline/quit):
A:accept # 接受协议
3.Q:
│ CUDA Installer │
│ - [X] Driver │
│ [X] 455.32.00 │
│ + [X] CUDA Toolkit 11.1 │
│ [X] CUDA Samples 11.1 │
│ [X] CUDA Demo Suite 11.1 │
│ [X] CUDA Documentation 11.1 │
│ Options │
│ Install
A:
#注意根据提示:[ ]中没有X的即不选择,[X] 表示选择安装,因为已经提前安装了显卡驱动,所以把显卡驱动的安装选项取消掉:
#只有CUDA Toolkit 11.0是必选项,其他可选可不选
# Install进入下一步
4.Q: A symlink already exists at /usr/local/cuda. Update to this installation? │
│ Yes │
│ No
A:N0,选择no,否则会创建一个软连接覆盖之前那个/usr/local/cuda
至此CUDA11.1安装成功
cuda版本切换和环境变量设置
1、在 ~/.bashrc 文件中设置cuda的环境变量内容如下,这样是可以做到cuda版本切换的,通过更换软连接方式:
gedit ~/.bashrc
添加环境变量,在~/.bashrc的最后添加以下内容export PATH=/usr/local/cuda/bin:$PATH
export LD_LIBRARY_PATH=/usr/local/cuda/lib64:$LD_LIBRARY_PATH
export CUDA_HOME=/usr/local/cuda保存文件,然后运行命令:
source ~/.bashrc
安装后,在/usr/local路径下,通过ls命令查看是否存在新安装的CUDA目录:
可以看到有之前安装的cuda-11.0和新安装的cuda-11.1
三、安装对应的cuDNN
安装新的版本的CUDA后,还要安装对应的cuDNN。
1、首先下载对应版本的cuDNN
百度搜索cuDNN官网,下载CUDA对应版本的cuDNN
https://developer.nvidia.cn/rdp/cudnn-archive
我下载的是Download cuDNN v8.0.5 (November 9th, 2020), for CUDA 11.1
此处下载:
cuDNN Library for Linux (x86_64)
2、cd到cudnn压缩包所在的文件夹下进行解压等操作:
tar -zxvf cudnn-11.1-linux-x64-v8.0.5.39.tgz
sudo cp cuda/include/cudnn.h /usr/local/cuda-11.1/include/
sudo cp cuda/lib64/libcudnn* /usr/local/cuda-11.1/lib64/
sudo chmod a+r /usr/local/cuda-11.1/include/cudnn.h /usr/local/cuda-11.1/lib64/libcudnn*cd /usr/local/cuda-11.1/lib64/
sudo ln -sf libcudnn.so.8.0.5 libcudnn.so.8
注意:这里cuda-后面的数字根据自己的版本号进行个修改,不知道的话可以Tab补全
四、CUDA版本的切换
1、删除原版本的cuda软连接
sudo rm -rf /usr/local/cuda
2、建立新的指向cuda-11.1的软连接
sudo ln -s /usr/local/cuda-11.1 /usr/local/cuda
3、重新查看当前CUDA版本
cd /usr/local/
stat cuda
五、安装yolo v8所需的pytorch
前几步已经安装好了cuda和cudnn,这里下载对应的pytorch==1.8.0
cuda和pytorch版本关系网址:https://pytorch.org/get-started/previous-versions/
a.创建yolov8的conda环境
conda create -n yolov8 python=3.8
b.进入yolov8的conda环境
conda activate yolov8
c.下载pytorch及对应的torchvision、torchaudio、cudatoolkit等
conda install pytorch==1.8.0 torchvision==0.9.0 torchaudio==0.8.0 cudatoolkit=11.1 -c pytorch -c conda-forge
注意:此时报错
/ WARNING conda.core.envs_manager:register_env(50): Unable to register enviroment. Path not writable or missing.
解决办法:这是一个conda新建虚拟环境的权限问题,给予主目录下anaconda3文件权限即可(在主目录下打开终端),执行以下命令。
sudo chown -R dlut anaconda3
其中:dlut是我电脑的名字,根据实际情况修改。
回到之前的终端,重新执行
conda install pytorch==1.8.0 torchvision==0.9.0 torchaudio==0.8.0 cudatoolkit=11.1 -c pytorch -c conda-forge
此时,显示了yolov8的conda环境已经成功配置,执行以下命令即可查询到pytorch对应的cuda版本。
python -c "import torch; print(torch.version.cuda)"
显示的是CUDA 11.1。
终于搞定了,完结撒花~~ 接下来正式安装及运行yolov8
相关文章:

ubuntu18.04复现yolo v8环境配置之CUDA与pytorch版本问题以及多CUDA版本安装及切换
最近在复现yolo v8的程序,特记录一下过程 环境:ubuntu18.04ros melodic 小知识:GPU并行计算能力高于CPU—B站UP主说的 Ubuntu可以安装多个版本的CUDA。如果某个程序的Pyorch需要不同版本的CUDA,不必删除之前的CUDA,…...
Yaml配置文件读取方法
在日常的代码中,有一些值是配置文件中定义的,这些值可以根据用户的要求进行调整和改变。这往往会写在yaml格式的文件中。这样开放程序给用户时,就可以不必开放对应的源码,只开放yaml格式的配置文件即可。 将配置文件中的值读入程…...
Python3 lambda 函数入门示例 Python lambda 函数
Python lambda 函数 首先,这个语法跟C的语法几乎一样; 通常称 lambda 函数为匿名函数,也称为 丢弃函数,因为应一下子就不要了,不会长期凝结下来形成SDK API;本人觉得它有点类似 inline 函数,或者…...

【计算机网络】HTTPs 传输流程
HTTPS和HTTP的区别 1、HTTP协议传输的数据都是未加密的,是明文的,使用HTTP协议传输隐私信息非常不安 HTTPS协议是由SSLHTTP协议构建的可进行加密传输、身份认证的网络协议,要比http协议安全。 2、HTTPS协议需要到CA申请证书,一般…...
【Linux】国产深度系统装机必备(开发、日常使用)
开发相关工具 IDE推荐官网下载JetBrains Toolbox,后续所有与jetbrains直接全部到toolbox中下载,这里默认所有的app全部放在个人用户下(/data/home/计算机用户名/.local/share/JetBrains/Toolbox/apps)终端可视化工具:…...

动态规划入门:斐波那契数列模型以及多状态(C++)
斐波那契数列模型以及多状态 动态规划简述斐波那契数列模型1.第 N 个泰波那契数(简单)2.三步问题(简单)3.使⽤最⼩花费爬楼梯(简单)4.解码方法(中等) 简单多状态1.打家劫舍ÿ…...

LeetCode438.找到字符串中所有字母异位词
因为之前写过一道找字母异位词分组的题,所以这道题做起来还是比较得心应手。我像做之前那道字母异位词分组一样,先把模板p排序,然后拿滑动窗口去s中从头到尾滑动,窗口中的这段字串也给他排序,然后拿这两个排完序的stri…...

【微服务】03-HttpClientFactory与gRpc
文章目录 1.HttpClientFactory :管理外向请求的最佳实践1.1 核心能力1.2 核心对象1.3 HttpClient创建模式 2.gRPC:内部服务间通讯利器2.1 什么是gRPC2.2 特点gRPC特点2.3.NET生态对gRPC的支持情况2.4 服务端核心包2.5 客户端核心包2.5 .proto文件2.6 gRP…...

iOS开发之查看静态库(.a/.framework)中包含的.o文件和函数符号(ar,nm命令)
.a/.framework其实是把编译生成的.o文件,打包成一个.a/.framework文件。a的意思是archive/归档的意思。 查看静态库.a文件包含的内容用下面的命令解压: ar x xxx.a 用ar命令打包静态库: 参数r是将后面的*.o或者*.a文件添加到目标文件中 参数…...

Idea常用快捷键--让你代码效率提升一倍(一)
一、代码编辑相关快捷键 1.单行复制(实现快速创建多个对象)CtrlD 2.空出下一行 ShiftEnter 3.单行注释快捷键 ctrl / 4.快速构建构造函数,setter,getter、toString方法 AltInsert 4.显示快速修复和操作的菜单 altenter 5.格式化代码:C…...
【Open3D】第二篇:GUI编程
文章目录 基本控件创建创建文本框创建button创建布局 绘制形状绘制线段绘制点云 设置属性设置线宽设置点大小 可用Shader汇总GUI框架 基本控件创建 创建文本框 push_edit gui.TextEdit()创建button push_button gui.Button(...) push_button.horizontal_padding_em 0.5 p…...
【Python】P0 本系列博文简介与大纲
Python 前言本系列博文适合谁本系列博文不适合谁本系列博文大纲 前言 本系列博文基于《Python Cookbook》一书,Python 3 版本;本系列博文的目标不是为了构建一个 Python 知识大全,而是为了那些需要快速将 Python 学以致用的相关人员…...

FL Studio 21.1.0 Build 3713中文破解免费下载安装激活
FL Studio 21是一个功能齐全、开放式的PC音乐创作和制作环境。它具有基于音乐序列器的图形用户界面。 这个数字音频工作站将您所需的一切整合在一个包中,用于创作、编排、录制、编辑、混音和掌握专业质量的音乐。 FL Studio 21是从你的大脑到扬声器的最快方式。制作…...

从0开始配置eslint
没有在.eslintrc文件中配置parserOptions指定语言版本和模块类型 {"parserOptions": {"ecmaVersion": 7, //指定es版本为es2016"sourceType": "module", //使用import导入模块} }eslint还不能识别jsx语法 {"parserOptions"…...

Activity 的启动流程(Android 13)
Activity 的启动过程分为两种:一种是普通 Activity 的启动过程,另一种是根 Activity 的启动过程。普通 Activity 指的是除应用程序启动的第一个 Activity 之外的其他 Activity。根 Activity 指的是应用程序启动的第一个 Activity,因此&#x…...
deepspeed学习资料
记录一些deepspeed学习过程中的好文章 【进行中】1、DeepSpeed使用指南(简略版)_Reza.的博客-CSDN博客 - 含deepspeed的安装方法 - 含 zero config的不同配置,stage1、stage2、stage3的配置和解释...

数据分享|R语言PCA主成分、lasso、岭回归降维分析近年来各国土地面积变化影响...
全文链接:http://tecdat.cn/?p31445 机器学习在环境监测领域的应用,着眼于探索全球范围内的环境演化规律,人类与自然生态之间的关系以及环境变化对人类生存的影响(点击文末“阅读原文”获取完整代码数据)。 课题着眼于…...

Docker-Consul
Docker-Consul 一、介绍1.什么是服务注册与发现2.什么是consul3.consul提供的一些关键特性: 二、consul 部署1.环境准备2.consul服务器3.查看集群信息4.通过 http api 获取集群信息 三、registrator服务器1.安装 Gliderlabs/Registrator2.测试服务发现功能是否正常3…...
Pygame编程(2)display模块
pygame编程2-display设备显示 pygame.display.init() 初始化 display 模块init() -> None pygame.display.get_init() 获取display初始化 状态,如果已经初始化,返回 True,否则返回Falseget_init() -> bool pygame.display.quit() 退出…...
第十五天|104.二叉树的最大深度、111.二叉树的最小深度、 222.完全二叉树的节点个数
104.二叉树的最大深度 题目链接:104. 二叉树的最大深度 - 力扣(LeetCode) /*** Definition for a binary tree node.* struct TreeNode {* int val;* TreeNode *left;* TreeNode *right;* TreeNode() : val(0), left(nullp…...
设计模式和设计原则回顾
设计模式和设计原则回顾 23种设计模式是设计原则的完美体现,设计原则设计原则是设计模式的理论基石, 设计模式 在经典的设计模式分类中(如《设计模式:可复用面向对象软件的基础》一书中),总共有23种设计模式,分为三大类: 一、创建型模式(5种) 1. 单例模式(Sing…...

C++初阶-list的底层
目录 1.std::list实现的所有代码 2.list的简单介绍 2.1实现list的类 2.2_list_iterator的实现 2.2.1_list_iterator实现的原因和好处 2.2.2_list_iterator实现 2.3_list_node的实现 2.3.1. 避免递归的模板依赖 2.3.2. 内存布局一致性 2.3.3. 类型安全的替代方案 2.3.…...

iOS 26 携众系统重磅更新,但“苹果智能”仍与国行无缘
美国西海岸的夏天,再次被苹果点燃。一年一度的全球开发者大会 WWDC25 如期而至,这不仅是开发者的盛宴,更是全球数亿苹果用户翘首以盼的科技春晚。今年,苹果依旧为我们带来了全家桶式的系统更新,包括 iOS 26、iPadOS 26…...
将对透视变换后的图像使用Otsu进行阈值化,来分离黑色和白色像素。这句话中的Otsu是什么意思?
Otsu 是一种自动阈值化方法,用于将图像分割为前景和背景。它通过最小化图像的类内方差或等价地最大化类间方差来选择最佳阈值。这种方法特别适用于图像的二值化处理,能够自动确定一个阈值,将图像中的像素分为黑色和白色两类。 Otsu 方法的原…...

(二)原型模式
原型的功能是将一个已经存在的对象作为源目标,其余对象都是通过这个源目标创建。发挥复制的作用就是原型模式的核心思想。 一、源型模式的定义 原型模式是指第二次创建对象可以通过复制已经存在的原型对象来实现,忽略对象创建过程中的其它细节。 📌 核心特点: 避免重复初…...

Cloudflare 从 Nginx 到 Pingora:性能、效率与安全的全面升级
在互联网的快速发展中,高性能、高效率和高安全性的网络服务成为了各大互联网基础设施提供商的核心追求。Cloudflare 作为全球领先的互联网安全和基础设施公司,近期做出了一个重大技术决策:弃用长期使用的 Nginx,转而采用其内部开发…...
css的定位(position)详解:相对定位 绝对定位 固定定位
在 CSS 中,元素的定位通过 position 属性控制,共有 5 种定位模式:static(静态定位)、relative(相对定位)、absolute(绝对定位)、fixed(固定定位)和…...

NLP学习路线图(二十三):长短期记忆网络(LSTM)
在自然语言处理(NLP)领域,我们时刻面临着处理序列数据的核心挑战。无论是理解句子的结构、分析文本的情感,还是实现语言的翻译,都需要模型能够捕捉词语之间依时序产生的复杂依赖关系。传统的神经网络结构在处理这种序列依赖时显得力不从心,而循环神经网络(RNN) 曾被视为…...
聊一聊接口测试的意义有哪些?
目录 一、隔离性 & 早期测试 二、保障系统集成质量 三、验证业务逻辑的核心层 四、提升测试效率与覆盖度 五、系统稳定性的守护者 六、驱动团队协作与契约管理 七、性能与扩展性的前置评估 八、持续交付的核心支撑 接口测试的意义可以从四个维度展开,首…...
大学生职业发展与就业创业指导教学评价
这里是引用 作为软工2203/2204班的学生,我们非常感谢您在《大学生职业发展与就业创业指导》课程中的悉心教导。这门课程对我们即将面临实习和就业的工科学生来说至关重要,而您认真负责的教学态度,让课程的每一部分都充满了实用价值。 尤其让我…...