图论基础和表示(Java 实例代码)
目录
图论基础和表示
一、概念及其介绍
二、适用说明
三、图的表达形式
Java 实例代码
src/runoob/graph/DenseGraph.java 文件代码:
src/runoob/graph/SparseGraph.java 文件代码:
图论基础和表示
一、概念及其介绍
图论(Graph Theory)是离散数学的一个分支,是一门研究图(Graph)的学问。
图是用来对对象之间的成对关系建模的数学结构,由"节点"或"顶点"(Vertex)以及连接这些顶点的"边"(Edge)组成。
值得注意的是,图的顶点集合不能为空,但边的集合可以为空。图可能是无向的,这意味着图中的边在连接顶点时无需区分方向。否则,称图是有向的。下面左图是一个典型的无向图结构,右图则属于有向图。本章节介绍的图都是无向图。
图的分类:无权图和有权图,连接节点与节点的边是否有数值与之对应,有的话就是有权图,否则就是无权图。
图的连通性:在图论中,连通图基于连通的概念。在一个无向图 G 中,若从顶点 i 到顶点 j 有路径相连(当然从j到i也一定有路径),则称 i 和 j 是连通的。如果 G 是有向图,那么连接i和j的路径中所有的边都必须同向。如果图中任意两点都是连通的,那么图被称作连通图。如果此图是有向图,则称为强连通图(注意:需要双向都有路径)。图的连通性是图的基本性质。
完全图:完全是一个简单的无向图,其中每对不同的顶点之间都恰连有一条边相连。
自环边:一条边的起点终点是一个点。
平行边:两个顶点之间存在多条边相连接。
二、适用说明
图可用于在物理、生物、社会和信息系统中建模许多类型的关系和过程,许多实际问题可以用图来表示。因此,图论成为运筹学、控制论、信息论、网络理论、博弈论、物理学、化学、生物学、社会科学、语言学、计算机科学等众多学科强有力的数学工具。在强调其应用于现实世界的系统时,网络有时被定义为一个图,其中属性(例如名称)之间的关系以节点和或边的形式关联起来。
三、图的表达形式
邻接矩阵:1 表示相连接,0 表示不相连。
邻接表:只表达和顶点相连接的顶点信息
邻接表适合表示稀疏图 (Sparse Graph)
邻接矩阵适合表示稠密图 (Dense Graph)
Java 实例代码
源码包下载:Download
(1) 邻接矩阵
src/runoob/graph/DenseGraph.java 文件代码:
package runoob.graph;
/**
* 邻接矩阵
*/
public class DenseGraph {
// 节点数
private int n;
// 边数
private int m;
// 是否为有向图
private boolean directed;
// 图的具体数据
private boolean[][] g;
// 构造函数
public DenseGraph( int n , boolean directed ){
assert n >= 0;
this.n = n;
this.m = 0;
this.directed = directed;
// g初始化为n*n的布尔矩阵, 每一个g[i][j]均为false, 表示没有任和边
// false为boolean型变量的默认值
g = new boolean[n][n];
}
// 返回节点个数
public int V(){ return n;}
// 返回边的个数
public int E(){ return m;}
// 向图中添加一个边
public void addEdge( int v , int w ){
assert v >= 0 && v < n ;
assert w >= 0 && w < n ;
if( hasEdge( v , w ) )
return;
g[v][w] = true;
if( !directed )
g[w][v] = true;
m ++;
}
// 验证图中是否有从v到w的边
boolean hasEdge( int v , int w ){
assert v >= 0 && v < n ;
assert w >= 0 && w < n ;
return g[v][w];
}
}
(2)邻接表
src/runoob/graph/SparseGraph.java 文件代码:
package runoob.graph;
import java.util.Vector;
/**
* 邻接表
*/
public class SparseGraph {
// 节点数
private int n;
// 边数
private int m;
// 是否为有向图
private boolean directed;
// 图的具体数据
private Vector<Integer>[] g;
// 构造函数
public SparseGraph( int n , boolean directed ){
assert n >= 0;
this.n = n;
this.m = 0;
this.directed = directed;
// g初始化为n个空的vector, 表示每一个g[i]都为空, 即没有任和边
g = (Vector<Integer>[])new Vector[n];
for(int i = 0 ; i < n ; i ++)
g[i] = new Vector<Integer>();
}
// 返回节点个数
public int V(){ return n;}
// 返回边的个数
public int E(){ return m;}
// 向图中添加一个边
public void addEdge( int v, int w ){
assert v >= 0 && v < n ;
assert w >= 0 && w < n ;
g[v].add(w);
if( v != w && !directed )
g[w].add(v);
m ++;
}
// 验证图中是否有从v到w的边
boolean hasEdge( int v , int w ){
assert v >= 0 && v < n ;
assert w >= 0 && w < n ;
for( int i = 0 ; i < g[v].size() ; i ++ )
if( g[v].elementAt(i) == w )
return true;
return false;
}
}
相关文章:

图论基础和表示(Java 实例代码)
目录 图论基础和表示 一、概念及其介绍 二、适用说明 三、图的表达形式 Java 实例代码 src/runoob/graph/DenseGraph.java 文件代码: src/runoob/graph/SparseGraph.java 文件代码: 图论基础和表示 一、概念及其介绍 图论(Graph Theory)是离散数…...
各种数据库查询报错问题
文章目录 前言一、约束条件是自增,不能直接添加数据二、使用步骤1.引入库2.读入数据 总结 前言 记录常见的数据库使用问题,以及对应解决思路 一、约束条件是自增,不能直接添加数据 消息 8101,级别 16,状态 1…...

人效九宫格城市沙龙暨《人效九宫格白皮书》发布会 —上海站,圆满结束
8月11日,在上海龙之梦万丽酒店,由盖雅工场主办的人效九宫格城市沙龙暨《人效九宫格白皮书》发布会 —上海站,圆满结束。 近百位来自多个行业的企业管理者及人力资源从业者汇聚一堂,共同探讨企业如何将盈利模式从数量增长转为质量增…...

【C语言】文件操作 -- 详解
一、什么是文件 磁盘上的文件是文件。 1、为什么要使用文件 举个例子,当我们想实现一个 “通讯录” 程序时,在通讯录中新建联系人、删除联系人等一系列操作,此时的数据存储于内存中,程序退出后所有数据都会随之消失。为了让通讯录…...

飞天使-k8s基础组件分析-持久化存储
文章目录 emptyDirhostpathpv和pvc介绍nfs作为静态pv案例nfs作为动态pv案例使用本地文件夹作为pv改变默认存储类及回收策略参考文档 emptyDir 重启文件还有,但是如果杀了进程,则会丢失文件 创建pod # kubectl apply –f redis.yaml校验pod是否处于运行&…...

python连接PostgreSQL 数据库
执行如下命令安装 pip3 install psycopg2 python代码 Author: tkhywang 2810248865qq.com Date: 2023-08-21 11:42:17 LastEditors: tkhywang 2810248865qq.com LastEditTime: 2023-08-21 11:51:56 FilePath: \PythonProject02\PostgreSQL 数据库.py Description: 这是默认设置…...

数字图像处理—— Lab、YCbCr、HSV、RGB之间互转
Lab “Lab” 图像格式通常指的是 CIELAB 色彩空间,也称为 Lab 色彩空间。它是一种用于描述人类视觉感知的颜色的设备无关色彩空间,与常见的 RGB 和 CMYK 色彩空间不同。CIELAB 由国际照明委员会(CIE)于1976年定义,用于…...

自动驾驶SLAM技术第四章习题2
在g2o的基础上改成ceres优化,高博都写好了其他的部分, 后面改ceres就很简单了. 这块我用的是ceres的自动求导,很方便,就是转化为模板仿函数的时候有点麻烦, 代码部分如下 ceres_type.h : ceres优化核心库的头文件 这个文件写的内…...

vue拖拽div盒子实现上下拖动互换
vue拖拽div盒子实现上下拖动互换 <div v-for"(item, index) in formList" :key"index" draggable"true"dragstart"handleDragStart($event, item)"dragenter"handleDragEnter($event, item)"dragover.prevent"han…...

Visual Studio 2022 右键单击项目没有出现View | View Class Diagram(Visual Studio 无法使用类设计器)
文章目录 问题描述原因.NET Core项目.NET Framework项目 问题描述 当我们在Solution Explorer窗口右键单击项目时,快捷菜单中没有出现“查看”,或者出现了“查看”,但是“查看”里没有View Class Diagram。 原因 首先你要确保你安装了类设…...
EFCore常见用法
EFCore官方文档置顶,看这个就行。下面的内容只是总结,算是备忘录。 一、创建和删除 //1、创建数据库和表 db.Database.EnsureCreated();//将创建数据库(如果不存在)并初始化数据库架构。 如果存在任何表 (包括另一 DbContext 类)…...

概率论与数理统计:第六章:数理统计
文章目录 Ch6. 数理统计(一) 总体与样本(二) 统计量 (5个)2.5个常用统计量3.矩的概念 (三) 抽样分布 (3个)0.上α分位点1.χ分布2.t分布3.F分布 (四) 抽样分布定理1.单个正态总体2.两个正态总体 Ch6. 数理统计 (一) 总体与样本 1.概念: (1)总体 (2)样本 简单随机…...

拥塞控制(TCP限制窗口大小的机制)
拥塞控制机制可以使滑动窗口在保证可靠性的前提下,提高传输效率 关于滑动窗口的属性以及部分机制推荐看TCP中窗口和滑动窗口的含义以及流量控制 拥塞控制出现的原因 看了上面推荐的博客我们已经知道了,由于接收方接收数据的能力有限,所以要通…...

校园供水系统智能管理
import pandas as pd data1pd.read_excel("C://Users//JJH//Desktop//E//附件_一季度.xlsx") data2pd.read_excel("C://Users//JJH//Desktop//E//附件_二季度.xlsx") data3pd.read_excel("C://Users//JJH//Desktop//E//附件_三季度.xlsx") data4…...
Flask-SocketIO和Flask-Login联合开发socketio权限系统
设置 Flask, Flask-SocketIO, Flask-Login: 首先,确保安装了必要的库: pip install Flask Flask-SocketIO Flask-Login基础设置: from flask import Flask, render_template, redirect, url_for, request from flask_socketio import SocketIO, emit from flask_…...

航空电子设备中的TSN通讯架构—直升机
前言 以太网正在迅速取代传统网络,成为航空电子设备和任务系统的核心高速网络。本文提出了以太网时间敏感网络(TSN)在航空电子设备上应用的技术优势问题。在实际应用中,TSN已成为一个具有丰富的机制和协议的工具箱,可满足与时间和可靠性相关…...

elment-ui中使用el-steps案例
el-steps案例 样式 代码 <div class"active-box"><div class"active-title">请完善</div><el-steps :active"active" finish-status"success" align-center><el-step title"第一步" /><…...

FPGA解析串口指令控制spi flash完成连续写、读、擦除数据
前言 最近在收拾抽屉时找到一个某宝的spi flash模块,如下图所示,我就想用能不能串口来读写flash,大致过程就是,串口向fpga发送一条指令,fpga解析出指令控制flah,这个指令协议目前就是: 55 AA …...

msvcp120.dll丢失的解决方法,分享三种快速修复的方法
今天,我将和大家分享一个关于电脑问题的解决方法——msvcp120.dll丢失的解决方法。希望对大家有所帮助。 首先,让我们来了解一下msvcp120.dll文件。msvcp120.dll是Microsoft Visual C 2010 Redistributable Package的一个组件,它包含了一些运…...

mysql 8.0 窗口函数 之 序号函数 与 sql server 序号函数 一样
sql server 序号函数 序号函数 ROW_NUMBER() 顺序排序RANK() 并列排序,会跳过重复的序号,比如序号为1,1,3DENSE_RANK() 并列排序,不会跳过重复的序号,比如 序号为 1,1,2 语法结构…...

Flask RESTful 示例
目录 1. 环境准备2. 安装依赖3. 修改main.py4. 运行应用5. API使用示例获取所有任务获取单个任务创建新任务更新任务删除任务 中文乱码问题: 下面创建一个简单的Flask RESTful API示例。首先,我们需要创建环境,安装必要的依赖,然后…...

dedecms 织梦自定义表单留言增加ajax验证码功能
增加ajax功能模块,用户不点击提交按钮,只要输入框失去焦点,就会提前提示验证码是否正确。 一,模板上增加验证码 <input name"vdcode"id"vdcode" placeholder"请输入验证码" type"text&quo…...

智能在线客服平台:数字化时代企业连接用户的 AI 中枢
随着互联网技术的飞速发展,消费者期望能够随时随地与企业进行交流。在线客服平台作为连接企业与客户的重要桥梁,不仅优化了客户体验,还提升了企业的服务效率和市场竞争力。本文将探讨在线客服平台的重要性、技术进展、实际应用,并…...

ServerTrust 并非唯一
NSURLAuthenticationMethodServerTrust 只是 authenticationMethod 的冰山一角 要理解 NSURLAuthenticationMethodServerTrust, 首先要明白它只是 authenticationMethod 的选项之一, 并非唯一 1 先厘清概念 点说明authenticationMethodURLAuthenticationChallenge.protectionS…...
蓝桥杯 冶炼金属
原题目链接 🔧 冶炼金属转换率推测题解 📜 原题描述 小蓝有一个神奇的炉子用于将普通金属 O O O 冶炼成为一种特殊金属 X X X。这个炉子有一个属性叫转换率 V V V,是一个正整数,表示每 V V V 个普通金属 O O O 可以冶炼出 …...
智能AI电话机器人系统的识别能力现状与发展水平
一、引言 随着人工智能技术的飞速发展,AI电话机器人系统已经从简单的自动应答工具演变为具备复杂交互能力的智能助手。这类系统结合了语音识别、自然语言处理、情感计算和机器学习等多项前沿技术,在客户服务、营销推广、信息查询等领域发挥着越来越重要…...

MySQL 知识小结(一)
一、my.cnf配置详解 我们知道安装MySQL有两种方式来安装咱们的MySQL数据库,分别是二进制安装编译数据库或者使用三方yum来进行安装,第三方yum的安装相对于二进制压缩包的安装更快捷,但是文件存放起来数据比较冗余,用二进制能够更好管理咱们M…...

MFC 抛体运动模拟:常见问题解决与界面美化
在 MFC 中开发抛体运动模拟程序时,我们常遇到 轨迹残留、无效刷新、视觉单调、物理逻辑瑕疵 等问题。本文将针对这些痛点,详细解析原因并提供解决方案,同时兼顾界面美化,让模拟效果更专业、更高效。 问题一:历史轨迹与小球残影残留 现象 小球运动后,历史位置的 “残影”…...
站群服务器的应用场景都有哪些?
站群服务器主要是为了多个网站的托管和管理所设计的,可以通过集中管理和高效资源的分配,来支持多个独立的网站同时运行,让每一个网站都可以分配到独立的IP地址,避免出现IP关联的风险,用户还可以通过控制面板进行管理功…...

TSN交换机正在重构工业网络,PROFINET和EtherCAT会被取代吗?
在工业自动化持续演进的今天,通信网络的角色正变得愈发关键。 2025年6月6日,为期三天的华南国际工业博览会在深圳国际会展中心(宝安)圆满落幕。作为国内工业通信领域的技术型企业,光路科技(Fiberroad&…...