当前位置: 首页 > news >正文

开源TTS+gtx1080+cuda11.7+conda+python3.9吊打百度TTS

一、简介 

开源项目,文本提示的生成音频模型

https://github.com/suno-ai/bark

 Bark是由Suno创建的基于变换器的文本到音频模型。Bark可以生成极为逼真的多语种演讲以及其他音频 - 包括音乐、背景噪音和简单的声音效果。该模型还可以产生非言语沟通,如笑声、叹息和哭声。为了支持研究社区,我们提供了预训练的模型检查点,可用于推断,并可供商业使用。

二、演示链接:

https://pan.baidu.com/s/1O9_la6TBar75NfI1yut4Lg?pwd=utqg 提取码: utqg 

三、支持的语言

LanguageStatus
English (en)
German (de)
Spanish (es)
French (fr)
Hindi (hi)
Italian (it)
Japanese (ja)
Korean (ko)
Polish (pl)
Portuguese (pt)
Russian (ru)
Turkish (tr)
Chinese, simplified (zh)

显卡信息

四、安装步骤

1.安装conda

2.安装python3.9

conda create --name brakAI python=3.9

3.激活brakAI环境

conda activate barkAI

4.安装 pytorc

conda install pytorch==2.0.0 torchvision==0.15.0 torchaudio==2.0.0 pytorch-cuda=11.7 -c pytorch -c nvidia

5.查看了版本

import torch
print(torch.cuda.is_available())
print(torch.__version__)

 

6.克隆bark 

git clone https://github.com/suno-ai/bark
cd bark && pip install . 

7.测试

from bark import SAMPLE_RATE, generate_audio, preload_models
from scipy.io.wavfile import write as write_wav
from IPython.display import Audio# download and load all models
preload_models()# generate audio from text
text_prompt = """CSDN是全球知名中文IT技术交流平台,创建于1999年,包含原创博客、精品问答、职业培训、技术论坛、资源下载等产品服务,提供原创、优质、完整内容的专业IT技术开发社区.。
"""
audio_array = generate_audio(text_prompt)# save audio to disk
write_wav("bark_generation22.wav", SAMPLE_RATE, audio_array)# play text in notebook
Audio(audio_array, rate=SAMPLE_RATE)

会自动下载模型文件text_2.pt,也可以自己下载suno/bark at main 

模型路径 bark/generation.py

 

 将临时目录改到bark 根目录,模型文件下载到这个目录下

五、网页版提供服务

 

后端main.pyp

# -*- coding: utf-8 -*-
from flask import Flask, request, send_file, render_template_string ,jsonify
from bark import SAMPLE_RATE, generate_audio, preload_models
from scipy.io.wavfile import write as write_wav
import tempfile
import time
import osapp = Flask(__name__)# 下载和加载所有模型
preload_models()@app.route('/')
def index():return render_template_string(open('templates/index.html').read())@app.route('/generate', methods=['POST'])
def generate():text_prompt = request.form.get('text')if text_prompt:text_prompt = request.form['text']audio_array = generate_audio(text_prompt)timestamp = str(int(time.time()))filename = timestamp + "times.wav"filepath = os.path.join('wavfile', filename)write_wav(filepath, SAMPLE_RATE, audio_array)file_url = '/wavfile/' + filenamereturn jsonify({"file_url": file_url})else:return "No text provided!", 400if __name__ == '__main__':app.run(host='0.0.0.0' ,debug=True)

 前端index.html

<!DOCTYPE html>
<html lang="en">
<head><meta charset="UTF-8"><meta name="viewport" content="width=device-width, initial-scale=1.0"><title>Text to Audio</title><link rel="stylesheet" href="https://cdn.jsdelivr.net/npm/bootstrap@4.0.0/dist/css/bootstrap.min.css" integrity="sha384-Gn5384xqQ1aoWXA+058RXPxPg6fy4IWvTNh0E263XmFcJlSAwiGgFAW/dAiS6JXm" crossorigin="anonymous">
<script src="https://cdn.jsdelivr.net/npm/bootstrap@4.0.0/dist/js/bootstrap.min.js" integrity="sha384-JZR6Spejh4U02d8jOt6vLEHfe/JQGiRRSQQxSfFWpi1MquVdAyjUar5+76PVCmYl" crossorigin="anonymous"></script>
</head>
<body><div class="container mt-5"><h1>Text to Audio Converter By 3yuan 2023.8.22 23.15.00</h1><div class="form-group"><label for="text">Enter your text:</label><textarea class="form-control" id="text" rows="4" required></textarea></div><button id="convert" class="btn btn-primary">Convert</button><div  class="mt-3"><a href="https://blog.csdn.net/jxyk2007/article/details/132425993?">Open Source TTS+gtx1080+cuda11.7+conda+python3.9 ,Beat Baidu TTS</a></div><img id="loading" class="img-responsive mt-3" src="{{ url_for('static', filename='loading.gif') }}" style="display: none;" alt="Loading..."><div id="result" class="mt-3"></div><div id="result2" class="mt-3"></div></div><script src="https://code.jquery.com/jquery-3.3.1.min.js"></script><script>$("#convert").click(function() {var text = $("#text").val();if (text) {$("#loading").show();$.post("/generate", { text: text }, function(data) {$("#loading").hide();var link = $('<a href="' + data.file_url + '" download="' + data.file_url + '">Download the audio file</a>');$("#result").html(link);var link2 = $(" <video src="+ data.file_url +" data-canonical-src="+ data.file_url + " controls='controls'   autoplay='autoplay' style='max-height:200px; min-height: 100px'></video>");$("#result2").html(link2);});} else {alert("Please enter some text!");}});</script>
</body>
</html>

 

其他模型下载,文字转语言

Models - Hugging Face

相关文章:

开源TTS+gtx1080+cuda11.7+conda+python3.9吊打百度TTS

一、简介 开源项目&#xff0c;文本提示的生成音频模型 https://github.com/suno-ai/bark Bark是由Suno创建的基于变换器的文本到音频模型。Bark可以生成极为逼真的多语种演讲以及其他音频 - 包括音乐、背景噪音和简单的声音效果。该模型还可以产生非言语沟通&#xff0c;如…...

【私有GPT】CHATGLM-6B部署教程

【私有GPT】CHATGLM-6B部署教程 CHATGLM-6B是什么&#xff1f; ChatGLM-6B是清华大学知识工程和数据挖掘小组&#xff08;Knowledge Engineering Group (KEG) & Data Mining at Tsinghua University&#xff09;发布的一个开源的对话机器人。根据官方介绍&#xff0c;这是…...

基于“R语言+遥感“水环境综合评价方法教程

详情点击链接&#xff1a;基于"R语言遥感"水环境综合评价方法教程 一&#xff1a;R语言 1.1 R语言特点&#xff08;R语言&#xff09; 1.2 安装R&#xff08;R语言&#xff09; 1.3 安装RStudio&#xff08;R语言&#xff09; &#xff08;1&#xff09;下载地址…...

To_Heart—题解——P6234 [eJOI2019] T形覆盖

link. 突然很想写这篇题解。虽然题目不算难。 考场只有30分是为什么呢&#xff1f;看来是我没有完全理解这道题目吧&#xff01; 首先很明显的转换是&#xff0c;把 T 型覆盖看成十字形&#xff0c;再考虑最后减去某一块的贡献。 然后然后直接往原图上面放十字形!对于每一个…...

[软件工具]精灵标注助手目标检测数据集格式转VOC或者yolo

有时候我们拿到一个数据集发现是xml文件格式如下&#xff1a; <?xml version"1.0" ?> <doc><path>C:\Users\Administrator\Desktop\test\000000000074.jpg</path><outputs><object><item><name>dog</name>…...

Spring BeanName自动生成原理

先看代码演示 项目先定义一个User类 public class User {private String name;Overridepublic String toString() {return "User{" "name" name \ };}public String getName() {return name;}public void setName(String name) {this.name name;} }…...

论文阅读_图形图像_U-NET

name_en: U-Net: Convolutional Networks for Biomedical Image Segmentation name_ch: U-Net&#xff1a;用于生物医学图像分割的卷积网络 addr: http://link.springer.com/10.1007/978-3-319-24574-4_28 doi: 10.1007/978-3-319-24574-4_28 date_read: 2023-02-08 date_publi…...

基于热交换算法优化的BP神经网络(预测应用) - 附代码

基于热交换算法优化的BP神经网络&#xff08;预测应用&#xff09; - 附代码 文章目录 基于热交换算法优化的BP神经网络&#xff08;预测应用&#xff09; - 附代码1.数据介绍2.热交换优化BP神经网络2.1 BP神经网络参数设置2.2 热交换算法应用 4.测试结果&#xff1a;5.Matlab代…...

基于秃鹰算法优化的BP神经网络(预测应用) - 附代码

基于秃鹰算法优化的BP神经网络&#xff08;预测应用&#xff09; - 附代码 文章目录 基于秃鹰算法优化的BP神经网络&#xff08;预测应用&#xff09; - 附代码1.数据介绍2.秃鹰优化BP神经网络2.1 BP神经网络参数设置2.2 秃鹰算法应用 4.测试结果&#xff1a;5.Matlab代码 摘要…...

2.文章复现《热电联产系统在区域综合能源系统中的定容选址研究》(附matlab程序)

0.代码链接 1.简述 光热发电是大规模利用太阳能的新兴方式&#xff0c;其储热系 统能够调节光热电站的出力特性&#xff0c;进而缓解光热电站并网带来的火电机组调峰问题。合理配置光热电站储热容量&#xff0c;能够 有效降低火电机组调峰成本。该文提出一种光热电站储热容 量配…...

如何开启esxi主机的ssh远程连接

环境&#xff1a;esxi主机&#xff0c;说明&#xff1a;esxi主机默认ssh是不开启的&#xff0c;需要人工手动启动&#xff0c;也可以设置同esxi主机一起开机启动。 1、找到esxi主机&#xff0c;点击“配置”那里&#xff0c;再点击右边的属性&#xff0c;如图所示&#xff1a; …...

Android Studio实现解析HTML获取json,解析json图片URL,将URL存到list,进行瀑布流展示

目录 效果build.gradle&#xff08;app&#xff09;添加的依赖&#xff08;用不上的可以不加&#xff09;AndroidManifest.xml错误activity_main.xmlitem_image.xmlMainActivityImage适配器ImageModel 接收图片URL 效果 build.gradle&#xff08;app&#xff09;添加的依赖&…...

Centos7 交叉编译QT5.9.9源码 AArch64架构

环境准备 centos7 镜像 下载地址&#xff1a;http://mirrors.aliyun.com/centos/7.9.2009/isos/x86_64/ aarch64交叉编译链 下载地址&#xff1a;https://releases.linaro.org/components/toolchain/binaries/7.3-2018.05/aarch64-linux-gnu/ QT5.9.9源代码 下载地址&#xff1…...

爬虫逆向实战(二十)--某99网站登录

一、数据接口分析 主页地址&#xff1a;某99网站 1、抓包 通过抓包可以发现登录接口是AC_userlogin 2、判断是否有加密参数 请求参数是否加密&#xff1f; 通过查看“载荷”可以发现txtPassword和aws是加密参数 请求头是否加密&#xff1f; 无响应是否加密&#xff1f; 无…...

【C# 基础精讲】LINQ to Objects查询

LINQ to Objects是LINQ技术在C#中的一种应用&#xff0c;它专门用于对内存中的对象集合进行查询和操作。通过使用LINQ to Objects&#xff0c;您可以使用统一的语法来查询、过滤、排序、分组等操作各种.NET对象。本文将详细介绍LINQ to Objects的基本概念、常见的操作和示例&am…...

【力扣】209. 长度最小的子数组 <滑动窗口>

【力扣】209. 长度最小的子数组 给定一个含有 n 个正整数的数组和一个正整数 target 。 找出该数组中满足其和 ≥ target 的长度最小的连续子数组 [numsl, numsl1, …, numsr-1, numsr] &#xff0c;并返回其长度。如果不存在符合条件的子数组&#xff0c;返回 0 。 示例 1&a…...

帮助中心应该用什么工具做?

在线帮助中心是指一个位于互联网上的资源平台&#xff0c;提供给用户获取产品或服务相关信息、解决问题以及获取技术支持的渠道。它通常包含了组织化的知识库、常见问题解答&#xff08;FAQ&#xff09;、操作指南、教程视频、用户手册等内容。在线帮助中心的主要目标是为用户提…...

前端面试:【跨域与安全】跨域问题及解决方案

嗨&#xff0c;亲爱的Web开发者&#xff01;在构建现代Web应用时&#xff0c;跨域问题和安全性一直是不可忽视的挑战之一。本文将深入探讨跨域问题的背景以及解决方案&#xff0c;以确保你的应用既安全又能与其他域名的资源进行互操作。 1. 什么是跨域问题&#xff1f; 跨域问…...

【SQL中DDL DML DQL DCL所包含的命令】

SQL中DDL DML DQL DCL所包含的命令 关于DDL、DML、DQL、DCL的定义和适用范围如下&#xff1a; 数据定义语言&#xff08;Data Definition Language&#xff0c;DDL&#xff09;&#xff1a; DDL用于创建、修改和删除数据库中的表、视图、索引等对象。它的主要命令包括CREATE、A…...

LeetCode150道面试经典题-- 二叉树的最大深度(简单)

1.题目 给定一个二叉树 root &#xff0c;返回其最大深度。 二叉树的 最大深度 是指从根节点到最远叶子节点的最长路径上的节点数。 2.示例 3.思路 深度优先遍历 一个二叉树要查询到最大深度&#xff0c;可以将问题转为从根节点出发&#xff0c;查看左右子树的最大深度&am…...

剑指offer20_链表中环的入口节点

链表中环的入口节点 给定一个链表&#xff0c;若其中包含环&#xff0c;则输出环的入口节点。 若其中不包含环&#xff0c;则输出null。 数据范围 节点 val 值取值范围 [ 1 , 1000 ] [1,1000] [1,1000]。 节点 val 值各不相同。 链表长度 [ 0 , 500 ] [0,500] [0,500]。 …...

短视频矩阵系统文案创作功能开发实践,定制化开发

在短视频行业迅猛发展的当下&#xff0c;企业和个人创作者为了扩大影响力、提升传播效果&#xff0c;纷纷采用短视频矩阵运营策略&#xff0c;同时管理多个平台、多个账号的内容发布。然而&#xff0c;频繁的文案创作需求让运营者疲于应对&#xff0c;如何高效产出高质量文案成…...

Go 语言并发编程基础:无缓冲与有缓冲通道

在上一章节中&#xff0c;我们了解了 Channel 的基本用法。本章将重点分析 Go 中通道的两种类型 —— 无缓冲通道与有缓冲通道&#xff0c;它们在并发编程中各具特点和应用场景。 一、通道的基本分类 类型定义形式特点无缓冲通道make(chan T)发送和接收都必须准备好&#xff0…...

使用LangGraph和LangSmith构建多智能体人工智能系统

现在&#xff0c;通过组合几个较小的子智能体来创建一个强大的人工智能智能体正成为一种趋势。但这也带来了一些挑战&#xff0c;比如减少幻觉、管理对话流程、在测试期间留意智能体的工作方式、允许人工介入以及评估其性能。你需要进行大量的反复试验。 在这篇博客〔原作者&a…...

uniapp手机号一键登录保姆级教程(包含前端和后端)

目录 前置条件创建uniapp项目并关联uniClound云空间开启一键登录模块并开通一键登录服务编写云函数并上传部署获取手机号流程(第一种) 前端直接调用云函数获取手机号&#xff08;第三种&#xff09;后台调用云函数获取手机号 错误码常见问题 前置条件 手机安装有sim卡手机开启…...

性能优化中,多面体模型基本原理

1&#xff09;多面体编译技术是一种基于多面体模型的程序分析和优化技术&#xff0c;它将程序 中的语句实例、访问关系、依赖关系和调度等信息映射到多维空间中的几何对 象&#xff0c;通过对这些几何对象进行几何操作和线性代数计算来进行程序的分析和优 化。 其中&#xff0…...

linux设备重启后时间与网络时间不同步怎么解决?

linux设备重启后时间与网络时间不同步怎么解决&#xff1f; 设备只要一重启&#xff0c;时间又错了/偏了&#xff0c;明明刚刚对时还是对的&#xff01; 这在物联网、嵌入式开发环境特别常见&#xff0c;尤其是开发板、树莓派、rk3588 这类设备。 解决方法&#xff1a; 加硬件…...

mcts蒙特卡洛模拟树思想

您这个观察非常敏锐&#xff0c;而且在很大程度上是正确的&#xff01;您已经洞察到了MCTS算法在不同阶段的两种不同行为模式。我们来把这个关系理得更清楚一些&#xff0c;您的理解其实离真相只有一步之遥。 您说的“select是在二次选择的时候起作用”&#xff0c;这个观察非…...

Linux系统:进程间通信-匿名与命名管道

本节重点 匿名管道的概念与原理匿名管道的创建命名管道的概念与原理命名管道的创建两者的差异与联系命名管道实现EchoServer 一、管道 管道&#xff08;Pipe&#xff09;是一种进程间通信&#xff08;IPC, Inter-Process Communication&#xff09;机制&#xff0c;用于在不…...

【JavaEE】万字详解HTTP协议

HTTP是什么&#xff1f;-----互联网的“快递小哥” 想象我们正在网上购物&#xff1a;打开淘宝APP&#xff0c;搜索“蓝牙耳机”&#xff0c;点击商品图片&#xff0c;然后下单付款。这一系列操作背后&#xff0c;其实有一个看不见的“快递小哥”在帮我们传递信息&#xff0c;…...