深度学习的经典算法的论文、解读和代码实现
文章目录
- CNN网络的经典算法
- LeNet-5
- AlexNet
- VGG
- Inception
- Inception-v1(GoogLeNet)
- BN-Inception
- ResNet
- R-CNN
- R-CNN
- Fast R-CNN
- Faster R-CNN
- YOLO
- YOLO v1
- YOLO v2
- YOLO v3
- YOLO v4
- RNN的经典算法
- RNN
- GRU
- LSTM
- Encoder-Decoder
- Attention
- Transformer
CNN网络的经典算法
LeNet-5
- 来源论文:LeCun, Yann, et al. “Gradient-based learning applied to document recognition.” Proceedings of the IEEE 86.11 (1998): 2278-2324.
- 论文详解:CNN入门算法LeNet-5详解
- 代码实现:https://github.com/TaavishThaman/LeNet-5-with-Keras
AlexNet
- 来源论文:Krizhevsky, Alex, Ilya Sutskever, and Geoffrey E. Hinton. “Imagenet classification with deep convolutional neural networks.” Advances in neural information processing systems. 2012.
- 论文详解:CNN经典算法AlexNet介绍
- 代码实现:https://github.com/hjptriplebee/AlexNet_with_tensorflow
VGG
- 来源论文:Simonyan, Karen, and Andrew Zisserman. “Very deep convolutional networks for large-scale image recognition.” arXiv preprint arXiv:1409.1556 (2014).
- 论文详解:CNN经典算法VGGNet介绍
- 代码和预训练资源:VGGNet预训练模型及代码资源
Inception
Inception-v1(GoogLeNet)
- 来源论文:Szegedy, Christian, et al. “Going deeper with convolutions.” Proceedings of the IEEE conference on computer vision and pattern recognition. 2015.
- 论文详解:CNN经典算法之Inception V1(GoogLeNet)
- 代码和预训练资源:GoogLeNet代码资源(Tensorflow)
BN-Inception
- 来源论文:Szegedy, Christian, et al. “Inception-v4, inception-resnet and the impact of residual connections on learning.” Proceedings of the AAAI conference on artificial intelligence. Vol. 31. No. 1. 2017.
- 论文详解:CNN经典算法之BN-Inception
- 代码和预训练资源:BN-Inception代码资源
ResNet
- 来源论文:Targ, Sasha, Diogo Almeida, and Kevin Lyman. “Resnet in resnet: Generalizing residual architectures.” arXiv preprint arXiv:1603.08029 (2016).
- 论文详解:ResNet论文详解
- 代码实现:ResNet代码(超详细注释)+数据集下载地址
R-CNN
R-CNN
- 来源论文:Girshick, Ross, et al. “Rich feature hierarchies for accurate object detection and semantic segmentation.” Proceedings of the IEEE conference on computer vision and pattern recognition. 2014.
- 论文详解:R-CNN论文详解
- 代码实现:R-CNN代码
Fast R-CNN
- 来源论文:Girshick, Ross. “Fast r-cnn.” Proceedings of the IEEE international conference on computer vision. 2015.
- 论文详解:Fast R-CNN论文详解
- 代码实现:Fast R-CNN代码
Faster R-CNN
- 来源论文:Ren, Shaoqing, et al. “Faster r-cnn: Towards real-time object detection with region proposal networks.” Advances in neural information processing systems 28 (2015).
- 论文详解:一文读懂Faster RCNN
- 代码实现:Faster R-CNN代码实现
YOLO
YOLO v1
- 来源论文:YOLO v1论文
- 论文详解:YOLO v1详解
- 代码实现:YOLO v1代码实现
YOLO v2
- 来源论文:YOLO v2论文
- 论文详解:YOLO v2详解
- 代码实现:YOLO v2代码实现
YOLO v3
- 来源论文:YOLO v3论文
- 论文详解:YOLO v3详解
- 代码实现:YOLO v3代码
YOLO v4
- 来源论文:YOLO v4论文
- 论文详解:YOLO v4详解
- 代码实现:YOLO v4代码
RNN的经典算法
RNN
- 来源论文:Sherstinsky, Alex. “Fundamentals of recurrent neural network (RNN) and long short-term memory (LSTM) network.” Physica D: Nonlinear Phenomena 404 (2020): 132306.
- 论文详解:通俗易懂的RNN
- 代码实现:RNN代码
GRU
- 来源论文:Dey, Rahul, and Fathi M. Salem. “Gate-variants of gated recurrent unit (GRU) neural networks.” 2017 IEEE 60th international midwest symposium on circuits and systems (MWSCAS). IEEE, 2017.
- 论文详解:GRU(门控循环单元),易懂
- 代码实现:GRU代码
LSTM
- 来源论文:Huang, Zhiheng, Wei Xu, and Kai Yu. “Bidirectional LSTM-CRF models for sequence tagging.” arXiv preprint arXiv:1508.01991 (2015).
- 论文详解:如何从RNN起步,一步一步通俗理解LSTM
- 代码实现:LSTM代码实现
Encoder-Decoder
- 来源论文:Badrinarayanan, Vijay, Alex Kendall, and Roberto Cipolla. “Segnet: A deep convolutional encoder-decoder architecture for image segmentation.” IEEE transactions on pattern analysis and machine intelligence 39.12 (2017): 2481-2495.
- 论文详解:Encoder-Decoder 模型架构详解
- 代码实现:Encoder-Decoder代码实现
Attention
- 来源论文:Knudsen, Eric I. “Fundamental components of attention.” Annu. Rev. Neurosci. 30 (2007): 57-78.
- 论文详解:注意力机制介绍(attention)
- 代码实现:Attention代码
Transformer
- 来源论文:Kitaev, Nikita, Łukasz Kaiser, and Anselm Levskaya. “Reformer: The efficient transformer.” arXiv preprint arXiv:2001.04451 (2020).
- 论文详解:Transform详解
- 代码实现:Transformer代码
相关文章:
深度学习的经典算法的论文、解读和代码实现
文章目录 CNN网络的经典算法LeNet-5AlexNetVGGInceptionInception-v1(GoogLeNet)BN-Inception ResNetR-CNNR-CNNFast R-CNNFaster R-CNN YOLOYOLO v1YOLO v2YOLO v3YOLO v4 RNN的经典算法RNNGRULSTMEncoder-DecoderAttentionTransformer CNN网络的经典算法 LeNet-5 来源论文&…...

开源TTS+gtx1080+cuda11.7+conda+python3.9吊打百度TTS
一、简介 开源项目,文本提示的生成音频模型 https://github.com/suno-ai/bark Bark是由Suno创建的基于变换器的文本到音频模型。Bark可以生成极为逼真的多语种演讲以及其他音频 - 包括音乐、背景噪音和简单的声音效果。该模型还可以产生非言语沟通,如…...

【私有GPT】CHATGLM-6B部署教程
【私有GPT】CHATGLM-6B部署教程 CHATGLM-6B是什么? ChatGLM-6B是清华大学知识工程和数据挖掘小组(Knowledge Engineering Group (KEG) & Data Mining at Tsinghua University)发布的一个开源的对话机器人。根据官方介绍,这是…...

基于“R语言+遥感“水环境综合评价方法教程
详情点击链接:基于"R语言遥感"水环境综合评价方法教程 一:R语言 1.1 R语言特点(R语言) 1.2 安装R(R语言) 1.3 安装RStudio(R语言) (1)下载地址…...
To_Heart—题解——P6234 [eJOI2019] T形覆盖
link. 突然很想写这篇题解。虽然题目不算难。 考场只有30分是为什么呢?看来是我没有完全理解这道题目吧! 首先很明显的转换是,把 T 型覆盖看成十字形,再考虑最后减去某一块的贡献。 然后然后直接往原图上面放十字形!对于每一个…...

[软件工具]精灵标注助手目标检测数据集格式转VOC或者yolo
有时候我们拿到一个数据集发现是xml文件格式如下: <?xml version"1.0" ?> <doc><path>C:\Users\Administrator\Desktop\test\000000000074.jpg</path><outputs><object><item><name>dog</name>…...

Spring BeanName自动生成原理
先看代码演示 项目先定义一个User类 public class User {private String name;Overridepublic String toString() {return "User{" "name" name \ };}public String getName() {return name;}public void setName(String name) {this.name name;} }…...

论文阅读_图形图像_U-NET
name_en: U-Net: Convolutional Networks for Biomedical Image Segmentation name_ch: U-Net:用于生物医学图像分割的卷积网络 addr: http://link.springer.com/10.1007/978-3-319-24574-4_28 doi: 10.1007/978-3-319-24574-4_28 date_read: 2023-02-08 date_publi…...

基于热交换算法优化的BP神经网络(预测应用) - 附代码
基于热交换算法优化的BP神经网络(预测应用) - 附代码 文章目录 基于热交换算法优化的BP神经网络(预测应用) - 附代码1.数据介绍2.热交换优化BP神经网络2.1 BP神经网络参数设置2.2 热交换算法应用 4.测试结果:5.Matlab代…...

基于秃鹰算法优化的BP神经网络(预测应用) - 附代码
基于秃鹰算法优化的BP神经网络(预测应用) - 附代码 文章目录 基于秃鹰算法优化的BP神经网络(预测应用) - 附代码1.数据介绍2.秃鹰优化BP神经网络2.1 BP神经网络参数设置2.2 秃鹰算法应用 4.测试结果:5.Matlab代码 摘要…...

2.文章复现《热电联产系统在区域综合能源系统中的定容选址研究》(附matlab程序)
0.代码链接 1.简述 光热发电是大规模利用太阳能的新兴方式,其储热系 统能够调节光热电站的出力特性,进而缓解光热电站并网带来的火电机组调峰问题。合理配置光热电站储热容量,能够 有效降低火电机组调峰成本。该文提出一种光热电站储热容 量配…...

如何开启esxi主机的ssh远程连接
环境:esxi主机,说明:esxi主机默认ssh是不开启的,需要人工手动启动,也可以设置同esxi主机一起开机启动。 1、找到esxi主机,点击“配置”那里,再点击右边的属性,如图所示: …...

Android Studio实现解析HTML获取json,解析json图片URL,将URL存到list,进行瀑布流展示
目录 效果build.gradle(app)添加的依赖(用不上的可以不加)AndroidManifest.xml错误activity_main.xmlitem_image.xmlMainActivityImage适配器ImageModel 接收图片URL 效果 build.gradle(app)添加的依赖&…...

Centos7 交叉编译QT5.9.9源码 AArch64架构
环境准备 centos7 镜像 下载地址:http://mirrors.aliyun.com/centos/7.9.2009/isos/x86_64/ aarch64交叉编译链 下载地址:https://releases.linaro.org/components/toolchain/binaries/7.3-2018.05/aarch64-linux-gnu/ QT5.9.9源代码 下载地址࿱…...

爬虫逆向实战(二十)--某99网站登录
一、数据接口分析 主页地址:某99网站 1、抓包 通过抓包可以发现登录接口是AC_userlogin 2、判断是否有加密参数 请求参数是否加密? 通过查看“载荷”可以发现txtPassword和aws是加密参数 请求头是否加密? 无响应是否加密? 无…...

【C# 基础精讲】LINQ to Objects查询
LINQ to Objects是LINQ技术在C#中的一种应用,它专门用于对内存中的对象集合进行查询和操作。通过使用LINQ to Objects,您可以使用统一的语法来查询、过滤、排序、分组等操作各种.NET对象。本文将详细介绍LINQ to Objects的基本概念、常见的操作和示例&am…...
【力扣】209. 长度最小的子数组 <滑动窗口>
【力扣】209. 长度最小的子数组 给定一个含有 n 个正整数的数组和一个正整数 target 。 找出该数组中满足其和 ≥ target 的长度最小的连续子数组 [numsl, numsl1, …, numsr-1, numsr] ,并返回其长度。如果不存在符合条件的子数组,返回 0 。 示例 1&a…...

帮助中心应该用什么工具做?
在线帮助中心是指一个位于互联网上的资源平台,提供给用户获取产品或服务相关信息、解决问题以及获取技术支持的渠道。它通常包含了组织化的知识库、常见问题解答(FAQ)、操作指南、教程视频、用户手册等内容。在线帮助中心的主要目标是为用户提…...
前端面试:【跨域与安全】跨域问题及解决方案
嗨,亲爱的Web开发者!在构建现代Web应用时,跨域问题和安全性一直是不可忽视的挑战之一。本文将深入探讨跨域问题的背景以及解决方案,以确保你的应用既安全又能与其他域名的资源进行互操作。 1. 什么是跨域问题? 跨域问…...

【SQL中DDL DML DQL DCL所包含的命令】
SQL中DDL DML DQL DCL所包含的命令 关于DDL、DML、DQL、DCL的定义和适用范围如下: 数据定义语言(Data Definition Language,DDL): DDL用于创建、修改和删除数据库中的表、视图、索引等对象。它的主要命令包括CREATE、A…...
postgresql|数据库|只读用户的创建和删除(备忘)
CREATE USER read_only WITH PASSWORD 密码 -- 连接到xxx数据库 \c xxx -- 授予对xxx数据库的只读权限 GRANT CONNECT ON DATABASE xxx TO read_only; GRANT USAGE ON SCHEMA public TO read_only; GRANT SELECT ON ALL TABLES IN SCHEMA public TO read_only; GRANT EXECUTE O…...
Frozen-Flask :将 Flask 应用“冻结”为静态文件
Frozen-Flask 是一个用于将 Flask 应用“冻结”为静态文件的 Python 扩展。它的核心用途是:将一个 Flask Web 应用生成成纯静态 HTML 文件,从而可以部署到静态网站托管服务上,如 GitHub Pages、Netlify 或任何支持静态文件的网站服务器。 &am…...

Linux-07 ubuntu 的 chrome 启动不了
文章目录 问题原因解决步骤一、卸载旧版chrome二、重新安装chorme三、启动不了,报错如下四、启动不了,解决如下 总结 问题原因 在应用中可以看到chrome,但是打不开(说明:原来的ubuntu系统出问题了,这个是备用的硬盘&a…...

QT: `long long` 类型转换为 `QString` 2025.6.5
在 Qt 中,将 long long 类型转换为 QString 可以通过以下两种常用方法实现: 方法 1:使用 QString::number() 直接调用 QString 的静态方法 number(),将数值转换为字符串: long long value 1234567890123456789LL; …...
WebRTC从入门到实践 - 零基础教程
WebRTC从入门到实践 - 零基础教程 目录 WebRTC简介 基础概念 工作原理 开发环境搭建 基础实践 三个实战案例 常见问题解答 1. WebRTC简介 1.1 什么是WebRTC? WebRTC(Web Real-Time Communication)是一个支持网页浏览器进行实时语音…...
go 里面的指针
指针 在 Go 中,指针(pointer)是一个变量的内存地址,就像 C 语言那样: a : 10 p : &a // p 是一个指向 a 的指针 fmt.Println(*p) // 输出 10,通过指针解引用• &a 表示获取变量 a 的地址 p 表示…...
SQL Server 触发器调用存储过程实现发送 HTTP 请求
文章目录 需求分析解决第 1 步:前置条件,启用 OLE 自动化方式 1:使用 SQL 实现启用 OLE 自动化方式 2:Sql Server 2005启动OLE自动化方式 3:Sql Server 2008启动OLE自动化第 2 步:创建存储过程第 3 步:创建触发器扩展 - 如何调试?第 1 步:登录 SQL Server 2008第 2 步…...

若依登录用户名和密码加密
/*** 获取公钥:前端用来密码加密* return*/GetMapping("/getPublicKey")public RSAUtil.RSAKeyPair getPublicKey() {return RSAUtil.rsaKeyPair();}新建RSAUti.Java package com.ruoyi.common.utils;import org.apache.commons.codec.binary.Base64; im…...

数据结构:泰勒展开式:霍纳法则(Horner‘s Rule)
目录 🔍 若用递归计算每一项,会发生什么? Horners Rule(霍纳法则) 第一步:我们从最原始的泰勒公式出发 第二步:从形式上重新观察展开式 🌟 第三步:引出霍纳法则&…...
算法刷题-回溯
今天给大家分享的还是一道关于dfs回溯的问题,对于这类问题大家还是要多刷和总结,总体难度还是偏大。 对于回溯问题有几个关键点: 1.首先对于这类回溯可以节点可以随机选择的问题,要做mian函数中循环调用dfs(i&#x…...