当前位置: 首页 > news >正文

应知道的python基础知识

1、运算符

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

2、特殊情况下的逻辑运算

在这里插入图片描述
在这里插入图片描述

在这里插入图片描述

3、循环中的else

3.1 while else

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

3.2 for else

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

4、列表相关操作

列表的相关操作

4.1增(append, extend, insert)

  • 通过append可以向列表添加元素:列表.append(新元素数据)
  • 通过extend可以将另一个列表中的元素逐一添加到列表中:列表.extend(另外一个列表)
  • 在指定位置index(索引,理解为下标即可)前插入元素object:列表.insert(index, object)

4.2改:

修改元素的时候,要通过下标来确定要修改的是哪个元素,然后才能进行修改:列表[下标] = 新数据

4.3查(in, not in, count)

in(存在),如果存在那么结果为true,否则为false:数据 in 列表
not in(不存在),如果不存在那么结果为true,否则false :数据 not in 列表
count 查个数:列表.count(“要查询的数据”) # 结果就是找到的数据的个数

4.4删(del, pop, remove)

del:根据下标进行删除:del 列表[下表】
pop:删除最后一个元素:列表.pop()
remove:根据元素的值进行删除: 列表.remove(“值”)

4.5排序(sort, reverse)

sort:sort方法是将列表按特定顺序重新排列,默认为由小到大,参数reverse=True可改为倒序,由大到小。

>>> a = [1, 4, 2, 3]
>>> a.sort()
>>> a
[1, 2, 3, 4]
>>> a.sort(reverse=True)
>>> a
[4, 3, 2, 1]

reverse方法是将列表倒叙

>>> a = [1, 4, 2, 3]
>>> a
[1, 4, 2, 3]
>>> a.reverse()
>>> a
[3, 2, 4, 1]

5、列表、元组、集合的相互转换

列表、元组在定义时的顺序是怎样的,那么顺序就是怎样的
而集合的实际存储顺序与定义的顺序没有什么关系,而是与一个特殊的算法有关(把数据进行了哈希,这个我们暂不做深入讨论,只需要知道集合的顺序不确定即可),因为没有顺序,所以不可以用下标方式获取值,可以用for循环

元组不可修改
集合不可重复

nums1 = [11, 22, 33]  # 定义列表
nums2 = (44, 55, 66)  # 定义元组
nums3 = {77, 88, 99}  # 定义集合# 列表转换为元组、集合
print("-----------")
nums1_tuple = tuple(nums1)
print(type(nums1_tuple))
nums1_set = set(nums1)

相关文章:

应知道的python基础知识

1、运算符 2、特殊情况下的逻辑运算 3、循环中的else 3.1 while else 3.2 for else 4、列表相关操作 列表的相关操作 4.1增(append, extend, insert) 通过append可以向列表添加元素:列表.append(新元素数据)通过extend可以将另一个列表中的元素逐一添加到列表中:列表.exte…...

FFmpeg<第一篇>:环境配置

1、官网地址 http://ffmpeg.org/download.html2、linux下载ffmpeg 下载: wget https://ffmpeg.org/releases/ffmpeg-snapshot.tar.bz2解压: tar xvf ffmpeg-snapshot.tar.bz23、FFmpeg ./configure编译参数汇总 解压 ffmpeg-snapshot.tar.bz2 之后&…...

深度学习:Sigmoid函数与Sigmoid层区别

深度学习:Sigmoid函数与Sigmoid层 1. Sigmoid神经网络层 vs. Sigmoid激活函数 在深度学习和神经网络中,“Sigmoid” 是一个常见的术语,通常用来表示两个相关但不同的概念:Sigmoid激活函数和Sigmoid神经网络层。这两者在神经网络…...

❤ Ant Design Vue 2.28的使用

❤ Ant Design Vue 2.28 弹窗 //按钮 <a-button type"primary" click"showModal">Open Modal</a-button>//窗口 <a-modal v-model:visible"visible" title"Basic Modal" ok"handleOk"><p>Some con…...

R语言02-R语言中的向量

概念 在R语言中&#xff0c;向量&#xff08;Vector&#xff09;是最基本的数据结构之一&#xff0c;用于存储相同类型的多个元素。向量可以包含数值、字符、逻辑值等&#xff0c;但其中的所有元素必须具有相同的数据类型。向量可以通过c()函数创建&#xff0c;也可以通过其他…...

windows linux 都可执行的脚本 bat, shell 共存

核心, 执行一行解析一行 windows:执行的地方进行解析, 可以任意跳转执行; bash从上往下解析执行; 一行行解析发现语法错误; 差异: windows可以部分不解析; linux需要从上往下解析合法; 总结:linux, windows可以一上一下共存 # linux code# windows code 关键: 脚本解析的差…...

MATLAB图论合集(二)计算最小生成树

今天来介绍第二部分&#xff0c;图论中非常重要的知识点——最小生成树。作为数据结构的理论知识&#xff0c;Prim算法和克鲁斯卡尔算法的思想此处博主不详细介绍&#xff0c;建议在阅读本帖前熟练掌握。 对于无向带权图&#xff0c;在MATLAB中可以直接以邻接矩阵的方式创建出来…...

unity 模型显示在UI上 并交互(点击、旋转、缩放)

项目工程&#xff1a;unity模型显示在UI上并交互&#xff08;点击、旋转、缩放&#xff09;资源-CSDN文库 1.在Assets创建 Render Texture&#xff08;下面会用到&#xff09;&#xff0c;根据需要设置Size 2.创建UIRawImage&#xff0c;并把Render Texture赋上 3.创建相机&am…...

html实现页面切换、顶部标签栏(可删、可切换,点击左侧超链接出现标签栏)

一、在一个页面&#xff08;不跨页面&#xff09; 效果&#xff1a; 代码 <!DOCTYPE html> <html><head><style>/* 设置标签页外层容器样式 */.tab-container {width: 100%;background-color: #f1f1f1;overflow: hidden;}/* 设置标签页选项卡的样式…...

n-皇后问题(DFS)

n−皇后问题是指将 n 个皇后放在 nn 的国际象棋棋盘上&#xff0c;使得皇后不能相互攻击到&#xff0c;即任意两个皇后都不能处于同一行、同一列或同一斜线上。 现在给定整数 n&#xff0c;请你输出所有的满足条件的棋子摆法。 输入格式 共一行&#xff0c;包含整数 n。 输出…...

漏洞利用和权限提升

使用Kali Linux进行漏洞利用和权限提升是渗透测试过程中的一部分&#xff0c;用于评估系统的安全性。 漏洞利用&#xff1a; 选择目标&#xff1a; 首先&#xff0c;确定 要进行漏洞利用的目标系统。这可能是一个具有已知漏洞的应用程序、服务或操作系统。 收集信息&#xff…...

开源网安受邀参加软件供应链安全沙龙,推动企业提升安全治理能力

​8月23日下午&#xff0c;合肥软件行业软件供应链安全沙龙在中安创谷科技园举办。此次沙龙由合肥软件产业公共服务中心联合中安创谷科技园公司共同主办&#xff0c;开源网安软件供应链安全专家王晓龙、尹杰受邀参会并带来软件供应链安全方面的精彩内容分享&#xff0c;共同探讨…...

回归分析扫盲:为什么非线性模型不能直接用最优子集选择法

最近有人给我发了篇文章&#xff1a; 一个问题有一堆变量&#xff0c;我们要选取哪些变量来建模呢&#xff1f;我们来看看这篇文章是怎么做的&#xff1a; 这个方法简单来说就是&#xff1a;对于这一堆变量&#xff0c;我们每次尝试剔除其中一个变量&#xff0c;然后用剩下的变…...

单例模式简介

概念&#xff1a; 单例模式&#xff08;Singleton Pattern&#xff09;是一种创建型设计模式&#xff0c;它确保一个类只有一个实例&#xff0c;并提供全局访问点。单例模式的核心思想是限制某个类只能创建一个对象实例&#xff0c;并提供对该实例的全局访问。这样可以避免多个…...

WPF自定义命令及属性改变处理

1、项目建构 2、自定义命令 namespace WpfDemo.Base {public class MyCommand : ICommand{Action executeAction;public MyCommand(Action action){executeAction action;}public event EventHandler? CanExecuteChanged;public bool CanExecute(object? parameter){retu…...

macbook m1 docker中使用go

已经有一个centos8的镜像&#xff0c;本来打算在centos8中安装go 安装方法&#xff1a; # 1.下载go的安装包 mkdir install && cd install # 任意创建个文件夹 wget https://go.dev/dl/go1.20.2.linux-amd64.tar.gz# 2. 解压 tar -C xzf go1.20.2.linux-amd64.tar.g…...

【Hello Network】DNS协议 NAT技术 代理服务器

本篇博客简介&#xff1a;介绍DNS协议 NAT技术和代理服务器 网络各协议补充 DNSDNS背景DNS介绍DNS总结域名简介 NAT技术NAT技术背景NAT IP转换过程NAPTNAT技术缺陷NAT和代理服务器 网络协议总结应用层传输层网络层数据链路层 DNS DNS是一整套从域名映射到IP的系统 DNS背景 为…...

Android 使用模拟器模拟Linux操作系统

1. 简介 在Android手机上使用模拟器模拟ubuntu等操作系统&#xff0c;便于测试 2. 软件准备 Termux&#xff1a;是一款 Android 终端模拟器和 Linux 环境应用程序&#xff0c;无需 root 或设置即可直接运行。虽然酷安和谷歌菜市场都能下载&#xff0c;但这些渠道都很久没更新…...

机器学习基础之《分类算法(5)—朴素贝叶斯算法原理》

一、朴素贝叶斯算法 1、什么是朴素贝叶斯分类方法 之前用KNN算法&#xff0c;分类完直接有个结果&#xff0c;但是朴素贝叶斯分完之后会出现一些概率值&#xff0c;比如&#xff1a; 这六个类别&#xff0c;它都有一定的可能性 再比如&#xff0c;对文章进行分类&#xff1a;…...

# Go学习-Day6

文章目录 Go学习-Day6封装继承接口 Go学习-Day6 个人博客&#xff1a;CSDN博客 封装 类似java的类的封装&#xff0c;这里我们利用大小写和工厂模式来实现封装的功能略过 继承 相似的类具有相似的方法&#xff0c;反复绑定相同的方法&#xff0c;代码冗余&#xff0c;所以引…...

MPNet:旋转机械轻量化故障诊断模型详解python代码复现

目录 一、问题背景与挑战 二、MPNet核心架构 2.1 多分支特征融合模块(MBFM) 2.2 残差注意力金字塔模块(RAPM) 2.2.1 空间金字塔注意力(SPA) 2.2.2 金字塔残差块(PRBlock) 2.3 分类器设计 三、关键技术突破 3.1 多尺度特征融合 3.2 轻量化设计策略 3.3 抗噪声…...

系统设计 --- MongoDB亿级数据查询优化策略

系统设计 --- MongoDB亿级数据查询分表策略 背景Solution --- 分表 背景 使用audit log实现Audi Trail功能 Audit Trail范围: 六个月数据量: 每秒5-7条audi log&#xff0c;共计7千万 – 1亿条数据需要实现全文检索按照时间倒序因为license问题&#xff0c;不能使用ELK只能使用…...

vue3+vite项目中使用.env文件环境变量方法

vue3vite项目中使用.env文件环境变量方法 .env文件作用命名规则常用的配置项示例使用方法注意事项在vite.config.js文件中读取环境变量方法 .env文件作用 .env 文件用于定义环境变量&#xff0c;这些变量可以在项目中通过 import.meta.env 进行访问。Vite 会自动加载这些环境变…...

sipsak:SIP瑞士军刀!全参数详细教程!Kali Linux教程!

简介 sipsak 是一个面向会话初始协议 (SIP) 应用程序开发人员和管理员的小型命令行工具。它可以用于对 SIP 应用程序和设备进行一些简单的测试。 sipsak 是一款 SIP 压力和诊断实用程序。它通过 sip-uri 向服务器发送 SIP 请求&#xff0c;并检查收到的响应。它以以下模式之一…...

MySQL 部分重点知识篇

一、数据库对象 1. 主键 定义 &#xff1a;主键是用于唯一标识表中每一行记录的字段或字段组合。它具有唯一性和非空性特点。 作用 &#xff1a;确保数据的完整性&#xff0c;便于数据的查询和管理。 示例 &#xff1a;在学生信息表中&#xff0c;学号可以作为主键&#xff…...

android13 app的触摸问题定位分析流程

一、知识点 一般来说,触摸问题都是app层面出问题,我们可以在ViewRootImpl.java添加log的方式定位;如果是touchableRegion的计算问题,就会相对比较麻烦了,需要通过adb shell dumpsys input > input.log指令,且通过打印堆栈的方式,逐步定位问题,并找到修改方案。 问题…...

02-性能方案设计

需求分析与测试设计 根据具体的性能测试需求&#xff0c;确定测试类型&#xff0c;以及压测的模块(web/mysql/redis/系统整体)前期要与相关人员充分沟通&#xff0c;初步确定压测方案及具体的性能指标QA完成性能测试设计后&#xff0c;需产出测试方案文档发送邮件到项目组&…...

OpenHarmony标准系统-HDF框架之I2C驱动开发

文章目录 引言I2C基础知识概念和特性协议&#xff0c;四种信号组合 I2C调试手段硬件软件 HDF框架下的I2C设备驱动案例描述驱动Dispatch驱动读写 总结 引言 I2C基础知识 概念和特性 集成电路总线&#xff0c;由串网12C(1C、12C、Inter-Integrated Circuit BUS)行数据线SDA和串…...

统计按位或能得到最大值的子集数目

我们先来看题目描述&#xff1a; 给你一个整数数组 nums &#xff0c;请你找出 nums 子集 按位或 可能得到的 最大值 &#xff0c;并返回按位或能得到最大值的 不同非空子集的数目 。 如果数组 a 可以由数组 b 删除一些元素&#xff08;或不删除&#xff09;得到&#xff0c;…...

电脑定时关机工具推荐

软件介绍 本文介绍一款轻量级的电脑自动关机工具&#xff0c;无需安装&#xff0c;使用简单&#xff0c;可满足定时关机需求。 工具简介 这款关机助手是一款无需安装的小型软件&#xff0c;文件体积仅60KB&#xff0c;下载后可直接运行&#xff0c;无需复杂配置。 使用…...