当前位置: 首页 > news >正文

8.5 【C语言】指向函数的指针

8.5.1 什么是函数的指针

每次调用函数时都从该地址入口开始执行此段函数代码。函数名代表函数的起始地址。

8.5.2 用函数指针变量调用函数

例8.22 用函数求整数a和b中的大者

解题思路:在主函数调用max函数,除了可以通过函数名调用外,还可以通过指向函数的指针变量来实现。

#include<stdio.h>
int main(){int max(int,int);      //函数声明int a,b,c;printf("please enter a and b:");scanf("%d,%d,&a,&b");c=max(a,b);           //通过函数名调用max函数printf("a=%d\nb=%d\nmax=%d\n"a,b,c);return 0;
}
int max(int x,int y){int z;if(x>y) z=x;else    z=y;return(z);
}

(2)通过指针变量调用它所指向的函数

#include<stdio.h>{int main(){int max(int,int);   //函数声明int(*p)(int,int);  //定义指向函数的指针变量pint a,b,c;p=max;printf("please enter a and b:");scanf("%d,%d",&a,&b);c=(*p)(a,b);    //通过指针变量调用max函数printf("a=%d\nb=%d\nmax=%d\n",a,b,c);return 0;            }int max(int x,int y){int z;if(x>y) z=x;else    z=y;return(z);   }
}

8.5.3 怎样定义和使用指向函数的指针变量

类型名(*指针变量名)(函数参数表列)

(1)定义指向函数的指针变量,并不意味着这个指针变量可以指向任何函数,它只能指向在定义时指定的类型的函数。

(2)如果要用指针调用函数,必须先使指针变量指向该函数。

(3)在给函数指针变量赋值时,只须给出函数名而不必给出参数。

(4)用函数指针变量调用函数时,只须将(*p)代替函数名即可。

(5)对指向函数的指针变量不能进行算术运算,如p+n,p++,p--等运算是无意义的。

(6)用函数名调用函数,只能调用所指定的一个函数。

8.5.4 用指向函数的指针作函数参数

指向函数的指针变量的一个重要用途是把函数的入口地址作为参数传递到其他函数。

相关文章:

8.5 【C语言】指向函数的指针

8.5.1 什么是函数的指针 每次调用函数时都从该地址入口开始执行此段函数代码。函数名代表函数的起始地址。 8.5.2 用函数指针变量调用函数 例8.22 用函数求整数a和b中的大者 解题思路&#xff1a;在主函数调用max函数&#xff0c;除了可以通过函数名调用外&#xff0c;还可…...

C++实现字符串的逆置

目录 C和C的区别 【1】C对C的扩充 【2】C对C的兼容 第一个C程序 【1】hello world 【2】cout标准输出流对象 i&#xff09;介绍 ii&#xff09;运算 iii&#xff09;cout的使用 iv&#xff09;使用cout指定格式的输出 练习&#xff1a;1、输出斐波那契的前10项。 【3】…...

论Spring或Spring Boot的花式扩展

文章目录 引言扩展点讲述花式扩展之自动配置类花式扩展之实现接口实现方式样例 花式扩展之自定义starterImport方式SpringFactories方式 总结鸣谢 引言 Spring Boot是一个高度可定制的框架&#xff0c;旨在帮助开发者快速创建、配置和管理他们的应用程序 扩展点讲述 Spring Bo…...

如何评估分类模型的好坏

如何评估分类模型的好坏 评估分类预测模型的质量&#xff0c;常用一个矩阵、三条曲线和六个指标。 一个矩阵&#xff1a;混淆矩阵&#xff1b;三条曲线&#xff1a;ROC曲线、PR曲线、KS曲线&#xff1b;六个指标&#xff1a;正确率Acc、查全率R、查准率P、F值、AUC、BEP值、KS…...

● 84.柱状图中最大的矩形

84.柱状图中最大的矩形 class Solution { public:int largestRectangleArea(vector<int>& heights) {stack<int>st;heights.insert(heights.begin(),0);heights.push_back(0);st.push(0);int res0;for(int i1;i<heights.size();i){while(heights[i]<heig…...

未检查的转换: ‘java.lang.Object‘ 转换为 ‘java.util.List

fastjson方式 Object object ... // 获取待转换的objectList<WbsCategory> list JSON.parseObject(JSON.toJSONString(object), new TypeReference<List<WbsCategory>>() {}); 在这个示例中&#xff0c;我们使用JSON.toJSONString()将object对象转换…...

【C语言】使用C语言,实现九九乘法表(另附Python、Java、JavaScript实现方式)

文章目录 1. C语言实现1.1 思路1.2 代码实现 3.其他语言实现3.1 Python实现3.2 Java实现3.3 JavaScript实现 1. C语言实现 1.1 思路 九九乘法表图示&#xff1a; 思路如下&#xff1a;定义两层for循环即可实现九九乘法表 一共有9层&#xff0c;所以要定义一个变量i&#xff…...

[机缘参悟-102] :IT人 - 管理的本质?管理人与从事技术的本质区别?人性、冰山模型、需求层次模型

感悟&#xff1a; 管理的本质是&#xff1a;学习各种管理理论、方法、技能&#xff0c;克服自身的人性缺点、预防他人人性的恶点、利用他人的人性特点拿到结果&#xff0c;从而完成组织、管理者的上司、管理者自身、管理者下属的目标。管理中的问题&#xff0c;80%以上都人性问…...

[论文阅读笔记26]Tracking Everything Everywhere All at Once

论文地址: 论文 代码地址: 代码 这是一篇效果极好的像素级跟踪的文章, 发表在ICCV2023, 可以非常好的应对遮挡等情形, 其根本的方法在于将2D点投影到一个伪3D(quasi-3D)空间, 然后再映射回去, 就可以在其他帧中得到稳定跟踪. 这篇文章的方法不是很好理解, 代码也刚开源, 做一…...

【Java 动态数据统计图】前后端对接数据格式(Map返回数组格式数据)六(120)

说明&#xff1a; 前端使用&#xff1a;vue3.0 前后端对接数据格式&#xff1a;无非就是前端把后端返回的数据处理为自己想要的格式&#xff0c;或者&#xff0c;后端给前端处理好想要的格式&#xff1b; 针对前后端的柱状图&#xff0c;趋势图等数据对接&#xff0c;前端一般需…...

❤ 给自己的mac系统上安装java环境

❤ 给自己的mac系统上安装java环境 &#x1f353; 作为前端工程师如何给自己的mac系统上安装java环境 &#x1f34e; 最近因为自己的一些项目需求&#xff0c;mac电脑上需要安装一些后台的java环境&#xff0c;用来跑后台的java程序&#xff0c;于是从一个前端工程师的角度安…...

Java-匿名类

介绍 匿名类是指没有名字的类&#xff0c;它对一个给定的类进行拓展&#xff0c;或者实现一个给定的接口。使用匿名类可以使得代码更加简洁、紧凑、模块程度更高。 实现方式及语法 匿名类有两种实现方式 继承一个类&#xff0c;重写其方法实现一个接口&#xff08;可以是多…...

Maven的超级POM

对于我们创建的一个maven工程&#xff0c;即便我们自己的pom.xm文件中没有明确指定一个父工程&#xff08;父POM&#xff09;&#xff0c;其实也默认继承了超级POM&#xff0c;就好比JAVA类继承Object类一样。 maven官网关于超级POM的介绍&#xff1a; https://maven.apache.o…...

软考高级系统架构设计师系列论文九十二:论新技术的引进

软考高级系统架构设计师系列论文九十二:论新技术的引进 一、摘要二、正文三、总结一、摘要 根据国家税务总局对税务系统内所有系统进行集成与整合的需求,我所在的开发单位组织了全国金税工程防伪税控系统网络版的升级开发工作。该项目工程浩大,要求在具有严格的安全、可靠性…...

vue使用Bootstrap的详细方法

要在Vue中使用Bootstrap&#xff0c;您可以按照以下步骤进行操作&#xff1a; 安装Bootstrap&#xff1a;首先&#xff0c;您需要安装Bootstrap。您可以使用npm或者yarn来安装Bootstrap。打开终端&#xff0c;并在项目的根目录中运行以下命令&#xff1a; npm install bootst…...

leetcode做题笔记103. 二叉树的锯齿形层序遍历

给你二叉树的根节点 root &#xff0c;返回其节点值的 锯齿形层序遍历 。&#xff08;即先从左往右&#xff0c;再从右往左进行下一层遍历&#xff0c;以此类推&#xff0c;层与层之间交替进行&#xff09;。 思路一&#xff1a;BFS #define N 2000int** zigzagLevelOrder(st…...

如果将PC电脑变成web服务器:利用Nignx反向代理绕过运营商对80端口封锁

如果将PC电脑变成web服务器&#xff1a;利用Nignx反向代理绕过运营商对80端口封锁 在上一篇文章中&#xff0c;我们已经实现了内网主机的多次端口映射&#xff0c;将内网主机的端口映射到了公网&#xff0c;可以通过公网访问该主机了。 因为电信的家庭宽带&#xff0c;默认是…...

Eureka:服务注册-信息配置-自我保护机制

首先在提供者服务下&#xff0c;添加一个依赖 <!-- Eureka --><dependency><groupId>org.springframework.cloud</groupId><artifactId>spring-cloud-starter-eureka</artifactId><version>1.4.6.RELEASE</version><…...

C++二叉树进阶

本期内容我们讲解二叉树的进阶知识&#xff0c;没有看过之前内容的小伙伴建议先看往期内容 二叉树-----补充_KLZUQ的博客-CSDN博客 目录 二叉搜索树 代码实现 基础框架 Insert Find Erase 析构函数 拷贝构造 赋值 二叉搜索树的应用 全部代码 二叉搜索树 二叉搜索树…...

layui tree组件取消勾选

layui(2.8.15) tree的api中&#xff0c;只有 tree.setChecked(id, idArr) 方法&#xff0c;没有取消勾选的方法。 我的需求是&#xff1a;勾选后做判断&#xff0c;如果不符合条件则取消勾选。 实现方法&#xff1a; 使用 tree的oncheck事件&#xff0c;在回调函数中做判断&…...

地震勘探——干扰波识别、井中地震时距曲线特点

目录 干扰波识别反射波地震勘探的干扰波 井中地震时距曲线特点 干扰波识别 有效波&#xff1a;可以用来解决所提出的地质任务的波&#xff1b;干扰波&#xff1a;所有妨碍辨认、追踪有效波的其他波。 地震勘探中&#xff0c;有效波和干扰波是相对的。例如&#xff0c;在反射波…...

ffmpeg(四):滤镜命令

FFmpeg 的滤镜命令是用于音视频处理中的强大工具&#xff0c;可以完成剪裁、缩放、加水印、调色、合成、旋转、模糊、叠加字幕等复杂的操作。其核心语法格式一般如下&#xff1a; ffmpeg -i input.mp4 -vf "滤镜参数" output.mp4或者带音频滤镜&#xff1a; ffmpeg…...

苍穹外卖--缓存菜品

1.问题说明 用户端小程序展示的菜品数据都是通过查询数据库获得&#xff0c;如果用户端访问量比较大&#xff0c;数据库访问压力随之增大 2.实现思路 通过Redis来缓存菜品数据&#xff0c;减少数据库查询操作。 缓存逻辑分析&#xff1a; ①每个分类下的菜品保持一份缓存数据…...

现代密码学 | 椭圆曲线密码学—附py代码

Elliptic Curve Cryptography 椭圆曲线密码学&#xff08;ECC&#xff09;是一种基于有限域上椭圆曲线数学特性的公钥加密技术。其核心原理涉及椭圆曲线的代数性质、离散对数问题以及有限域上的运算。 椭圆曲线密码学是多种数字签名算法的基础&#xff0c;例如椭圆曲线数字签…...

Spring Boot+Neo4j知识图谱实战:3步搭建智能关系网络!

一、引言 在数据驱动的背景下&#xff0c;知识图谱凭借其高效的信息组织能力&#xff0c;正逐步成为各行业应用的关键技术。本文聚焦 Spring Boot与Neo4j图数据库的技术结合&#xff0c;探讨知识图谱开发的实现细节&#xff0c;帮助读者掌握该技术栈在实际项目中的落地方法。 …...

根据万维钢·精英日课6的内容,使用AI(2025)可以参考以下方法:

根据万维钢精英日课6的内容&#xff0c;使用AI&#xff08;2025&#xff09;可以参考以下方法&#xff1a; 四个洞见 模型已经比人聪明&#xff1a;以ChatGPT o3为代表的AI非常强大&#xff0c;能运用高级理论解释道理、引用最新学术论文&#xff0c;生成对顶尖科学家都有用的…...

C++ 设计模式 《小明的奶茶加料风波》

&#x1f468;‍&#x1f393; 模式名称&#xff1a;装饰器模式&#xff08;Decorator Pattern&#xff09; &#x1f466; 小明最近上线了校园奶茶配送功能&#xff0c;业务火爆&#xff0c;大家都在加料&#xff1a; 有的同学要加波霸 &#x1f7e4;&#xff0c;有的要加椰果…...

LabVIEW双光子成像系统技术

双光子成像技术的核心特性 双光子成像通过双低能量光子协同激发机制&#xff0c;展现出显著的技术优势&#xff1a; 深层组织穿透能力&#xff1a;适用于活体组织深度成像 高分辨率观测性能&#xff1a;满足微观结构的精细研究需求 低光毒性特点&#xff1a;减少对样本的损伤…...

PHP 8.5 即将发布:管道操作符、强力调试

前不久&#xff0c;PHP宣布了即将在 2025 年 11 月 20 日 正式发布的 PHP 8.5&#xff01;作为 PHP 语言的又一次重要迭代&#xff0c;PHP 8.5 承诺带来一系列旨在提升代码可读性、健壮性以及开发者效率的改进。而更令人兴奋的是&#xff0c;借助强大的本地开发环境 ServBay&am…...

毫米波雷达基础理论(3D+4D)

3D、4D毫米波雷达基础知识及厂商选型 PreView : https://mp.weixin.qq.com/s/bQkju4r6med7I3TBGJI_bQ 1. FMCW毫米波雷达基础知识 主要参考博文&#xff1a; 一文入门汽车毫米波雷达基本原理 &#xff1a;https://mp.weixin.qq.com/s/_EN7A5lKcz2Eh8dLnjE19w 毫米波雷达基础…...