低通滤波器和高通滤波器
应用于图像低通滤波器和高通滤波器的实现
需要用到傅里叶变换
#include <opencv2/opencv.hpp>
#include <Eigen>
#include <iostream>
#include <vector>
#include <cmath>
#include <complex>#define M_PI 3.14159265358979323846 // pi
// 对数幅度缩放
Eigen::MatrixXd logAmplitudeSpectrum(const Eigen::MatrixXd& spectrum) {return (spectrum.array() + 1).log();
}// 乘幂尺度变换
Eigen::MatrixXd powerLawScaling(const Eigen::MatrixXd& spectrum, double gamma) {return spectrum.array().pow(gamma);
}// 归一化 to [0, 1]
Eigen::MatrixXd normalize(const Eigen::MatrixXd& spectrum) {double minVal = spectrum.minCoeff();double maxVal = spectrum.maxCoeff();return (spectrum.array() - minVal) / (maxVal - minVal);
}// 增强频谱显示
Eigen::MatrixXd enhanceSpectrumDisplay(const Eigen::MatrixXd& spectrum, double gamma = 1) {Eigen::MatrixXd logSpectrum = logAmplitudeSpectrum(spectrum);Eigen::MatrixXd powerScaledSpectrum = powerLawScaling(logSpectrum, gamma);return normalize(powerScaledSpectrum);
}// 从复数矩阵中获取幅度谱和相位谱
void getAmplitudeAndPhaseSpectra(const Eigen::MatrixXcd& data, Eigen::MatrixXd& amplitude, Eigen::MatrixXd& phase) {amplitude = data.array().abs().matrix();phase = data.array().arg().matrix();
}// 从幅度谱和相位谱重构复数矩阵
void reconstructFromAmplitudeAndPhase(const Eigen::MatrixXd& amplitude,const Eigen::MatrixXd& phase,Eigen::MatrixXcd& data)
{data = (amplitude.array() * (phase.array().cos() + std::complex<double>(0, 1) * phase.array().sin())).matrix();}// 1:**振幅谱低频移动到中心(频率平移)**:方便操作,利用象限对称互换 fft之后
Eigen::MatrixXd fftShift(const Eigen::MatrixXd &F)
{int M = F.rows();int N = F.cols();Eigen::MatrixXd F_shifted(M, N);int mid_M = M >> 1;int mid_N = N >> 1;// 交换第一象限和第三象限F_shifted.block(0, 0, mid_M, mid_N) = F.block(mid_M, mid_N, mid_M, mid_N);F_shifted.block(mid_M, mid_N, mid_M, mid_N) = F.block(0, 0, mid_M, mid_N);// 交换第二象限和第四象限F_shifted.block(0, mid_N, mid_M, mid_N) = F.block(mid_M, 0, mid_M, mid_N);F_shifted.block(mid_M, 0, mid_M, mid_N) = F.block(0, mid_N, mid_M, mid_N);return F_shifted;
}// 2:振幅谱低频移动到中心 **图像进行-1幂操作**:然后经过fft变换后,低频会在振幅谱中间 fft之前
Eigen::MatrixXd imageShift(const Eigen::MatrixXd &image)
{int M = image.rows();int N = image.cols();Eigen::MatrixXd F_shifted(M, N);// 通过乘以 (-1)^(u+v) 来平移频率for (int u = 0; u < M; ++u){for (int v = 0; v < N; ++v){//(u + v) & 1 通过位的判断末尾如果是1 为奇数,为0,为偶数。 -1的奇次幂还是-1,偶次幂为1.F_shifted(u, v) = image(u, v) * ((u + v) & 1 ? -1 : 1);}}return F_shifted;
}Eigen::MatrixXd tMatrixXd(const cv::Mat &img)
{Eigen::MatrixXd image(img.rows, img.cols);for (int i = 0; i < img.rows; ++i){for (int j = 0; j < img.cols; ++j){image(i, j) = img.at<float>(i, j);}}return image;
}
cv::Mat tMat(const Eigen::MatrixXd &img)
{cv::Mat image(img.rows(), img.cols(), CV_32FC1);for (int i = 0; i < img.rows(); ++i){for (int j = 0; j < img.cols(); ++j){image.at<float>(i, j) = img(i, j);}}return image;
}//inv =true 为逆变换,false为 正变换
//FFT 使用Eigen库中的向量表示,方便二维计算
Eigen::VectorXcd FFT(const Eigen::VectorXcd& y, bool inv = false)
{Eigen::VectorXcd x = y;//数据的大小int N = x.size();// 按位反转for (int i = 1, j = 0; i < N; i++){//bit = N/2int bit = N >> 1;/** 我们正在查看j的二进制表示中的每一位。从左到右,我们检查每一位是否为1。对于每一个为1的位,我们将其反转为0。当我们遇到第一个为0的位时,循环终止。*/for (; j & bit; bit >>= 1){j ^= bit;}//进行异或运算(XOR运算的工作原理是:当两个比较的位相同时,结果是0;当两个比较的位不同时,结果是1。)j ^= bit;//当 i >j 表示前面已经替换了位置, i==j,表示位置不用变if (i < j){std::swap(x[i], x[j]);}}// 预先计算旋转因子Eigen::VectorXcd w(N >> 1);//逆变换 = 1;傅里叶变换 = -1;double imag_i = inv ? 1.0 : -1.0;std::complex<double> tempW = std::exp(std::complex<double>(0, imag_i * 2 * M_PI / N));w[0] = 1;for (int i = 1; i < (N >> 1); ++i){// w[i] = std::polar(1.0, imag_i * 2 * M_PI * i / N);//w[i] = std::pow(tempW, i);w[i] = w[i - 1] * tempW;}// 迭代FFTfor (int len = 2; len <= N; len <<= 1){int halfLen = len >> 1;int step = N / len;for (int i = 0; i < N; i += len){for (int j = 0; j < halfLen; ++j){std::complex<double> u = x[i + j];std::complex<double> v = x[i + j + halfLen] * w[j * step];x[i + j] = u + v;x[i + j + halfLen] = u - v;}}}//使用逆变换时if (inv){for (std::complex<double>& a : x) {a /= N;}}return x;
}//检查二维数据大小是否为2的幂数,不是则填充为0到2的幂数大小
Eigen::MatrixXd padToPowerOfTwo(const Eigen::MatrixXd& matrix) {int rows = matrix.rows();int cols = matrix.cols();// 确保输入的大小是2的幂int newRows = 1, newCols = 1;while (newRows < rows){newRows <<= 1;}while (newCols < cols){newCols <<= 1;}Eigen::MatrixXd paddedMatrix = Eigen::MatrixXd::Zero(newRows, newCols);paddedMatrix.block(0, 0, rows, cols) = matrix;return paddedMatrix;
}
// 离散傅里叶变换 - 二维
Eigen::MatrixXcd FFT2D(const Eigen::MatrixXcd& image, bool inv = false) {int rows = image.rows();int cols = image.cols();Eigen::MatrixXcd result(rows, cols);for (int i = 0; i < rows; i++) {Eigen::VectorXcd temp = image.row(i).transpose();result.row(i) = FFT(temp, inv);}for (int j = 0; j < cols; j++) {Eigen::VectorXcd temp = result.col(j);result.col(j) = FFT(temp, inv);}return result;
}//创建高频 radius越小,越减少高频的部分,越大,越还原图像
Eigen::MatrixXd highFrequency (const Eigen::MatrixXd & data,int radius)
{int rows = data.rows();int cols = data.cols();// 创建高通滤波器(圆形掩码)Eigen::MatrixXd mask = Eigen::MatrixXd::Ones(rows, cols);//中心坐标int centerRow = rows >> 1;int centerCol = cols >> 1;//找到以 radius 大小的矩形范围内//左边位置int left = centerCol - radius;//超过边界 为0left = left > 0 ? left : 0;//右边位置int right = centerCol + radius;//超过边界 为0right = right < cols ? right : cols;//上边位置int top = centerRow - radius;//超过边界 为0top = top > 0 ? top : 0;//下边位置int down = centerRow + radius;//超过边界 为0down = down < rows ? down : rows;//在正矩形内画最大的圆for (int i = top; i < down; ++i){for (int j = left; j < right; ++j){//在图像中心画圆,半径不能超过double distance = std::sqrt(std::pow(i - centerRow, 2) + std::pow(j - centerCol, 2));if (distance <= radius){mask(i, j) = 0.0;}}}return mask;}
//创建高通滤波器 -
//简单的说,就是靠近频谱图中心的低频部分给舍弃掉,远离频谱图中心的高频部分保留。通常会保留物体的边界。
Eigen::MatrixXd highPassFilter(const Eigen::MatrixXd & image, int radius = 0)
{int rows = image.rows();int cols = image.cols();//大小变为2的幂数Eigen::MatrixXd data = padToPowerOfTwo(image);// 计算傅里叶变换Eigen::MatrixXcd transformed = FFT2D(data);//获取幅度谱和相位谱Eigen::MatrixXd amplitude, phase;getAmplitudeAndPhaseSpectra(transformed, amplitude, phase);//振幅谱移动到中心(频率平移)amplitude = fftShift(amplitude);/////增强振幅,用于观测 -- 实际运算注释掉Eigen::MatrixXd amplitude1 = enhanceSpectrumDisplay(amplitude,1);cv::Mat highP = tMat(amplitude1);cv::imshow("highPassFilter",highP);/////根据radius创建高频掩码Eigen::MatrixXd mask = highFrequency(amplitude, radius);amplitude = amplitude.array() * mask.array();//振幅谱移动到中心(频率平移)反转换amplitude = fftShift(amplitude);// 从幅度谱和相位谱重构复数矩阵reconstructFromAmplitudeAndPhase(amplitude, phase, transformed);// 计算逆变换Eigen::MatrixXcd reconstructed = FFT2D(transformed, true);return reconstructed.real().block(0, 0, rows, cols);
}
//创建低频 radius越小,越还原图像,越大,减少低频的部分,
Eigen::MatrixXd lowFrequency(const Eigen::MatrixXd & data,int radius)
{int rows = data.rows();int cols = data.cols();// 创建低通滤波器(圆形掩码)Eigen::MatrixXd mask = Eigen::MatrixXd::Zero(rows, cols);//中心坐标int centerRow = rows >> 1;int centerCol = cols >> 1;//找到以 radius 大小的矩形范围内//左边位置int left = centerCol - radius;//超过边界 为0left = left > 0 ? left : 0;//右边位置int right = centerCol + radius;//超过边界 为0right = right < cols ? right : cols;//上边位置int top = centerRow - radius;//超过边界 为0top = top > 0 ? top : 0;//下边位置int down = centerRow + radius;//超过边界 为0down = down < rows ? down : rows;//在正矩形内画最大的圆for (int i = top; i < down; ++i){for (int j = left; j < right; ++j){//在图像中心画圆,半径不能超过double distance = std::sqrt(std::pow(i - centerRow, 2) + std::pow(j - centerCol, 2));if (distance <= radius){mask(i, j) = 1.0;}}}return mask;}
//创建低通滤波器 -
//简单的说,就是靠近频谱图中心的低频部分给保留,远离频谱图中心的高频部分给去除掉。但是这会影响图像的清晰度。
Eigen::MatrixXd lowPassFilter(const Eigen::MatrixXd & image, int radius = 0)
{int rows = image.rows();int cols = image.cols();//大小变为2的幂数Eigen::MatrixXd data = padToPowerOfTwo(image);// 计算傅里叶变换Eigen::MatrixXcd transformed = FFT2D(data);//获取幅度谱和相位谱Eigen::MatrixXd amplitude, phase;getAmplitudeAndPhaseSpectra(transformed, amplitude, phase);//振幅谱移动到中心(频率平移)amplitude = fftShift(amplitude);///
// //增强振幅,用于观测 -- 实际运算注释掉
// Eigen::MatrixXd amplitude1 = enhanceSpectrumDisplay(amplitude,1);
// cv::Mat highP = tMat(amplitude1);
// cv::imshow("lowPassFilter",highP);/////根据radius创建高频掩码Eigen::MatrixXd mask = lowFrequency(amplitude, radius);amplitude = amplitude.array() * mask.array();//振幅谱移动到中心(频率平移)反转换amplitude = fftShift(amplitude);// 从幅度谱和相位谱重构复数矩阵reconstructFromAmplitudeAndPhase(amplitude, phase, transformed);// 计算逆变换Eigen::MatrixXcd reconstructed = FFT2D(transformed, true);return reconstructed.real().block(0, 0, rows, cols);
}int main()
{cv::Mat img = cv::imread("193560523230866.png");if (img.empty()){std::cout << "请确定是否输入正确的图像文件" << std::endl;}cv::Mat gray;cvtColor(img, gray, cv::COLOR_BGR2GRAY);//图像转换CV_32F储存gray.convertTo(gray, CV_32F, 1 / 255.0, 0);//图像太大,用直接计算 耗时太长,缩小比例//resize(gray, gray, cv::Size(80, 80));//Mat 转 MatrixXdEigen::MatrixXd image = tMatrixXd(gray);// 记录开始时间auto start = std::chrono::high_resolution_clock::now();//低频Eigen::MatrixXd low = lowPassFilter(image,50);//高频Eigen::MatrixXd high = highPassFilter(image, 50);// 记录结束时间auto stop = std::chrono::high_resolution_clock::now();// 计算持续时间auto duration = std::chrono::duration_cast<std::chrono::microseconds>(stop - start);qDebug() << "代码运行时长: " << duration.count() << " 微秒" ;cv::Mat lowP = tMat(low);//+0.5 增加显示效果high = high.array() + 0.5;cv::Mat highP = tMat(high);cv::imshow("lowP",lowP);cv::imshow("highP",highP);return 0;
}
- 振幅增强
相关文章:

低通滤波器和高通滤波器
应用于图像低通滤波器和高通滤波器的实现 需要用到傅里叶变换 #include <opencv2/opencv.hpp> #include <Eigen> #include <iostream> #include <vector> #include <cmath> #include <complex>#define M_PI 3.14159265358979323846…...
VS中插入Qt插件后配置项目笔记
Project下要创建四个文件夹: bin(输出目录\工作目录) 、include(头文件目录) 、lib(动态库目录) 、src(源码目录) 一、主项目模块配置: 1.配置属性——>常规——>输出目录加入(..\..\bin\) 2.配置属性——>调试——>工作目录加入($(OutDir)) 备注&am…...

Hugo·Stack主题·使用及修改
代码折叠 cp themes/hugo折-themt-saick/exampleSlte/config.yamsclass"codefold"><summary class"codefold__title"><span class"codefold__title-text">" {{ with .Get 0}}{{.}}{{else}}click to expand{{ end }} "&…...

实战:大数据Spark简介与docker-compose搭建独立集群
文章目录 前言技术积累Spark简介Spark核心功能及优势Spark运行架构 Spark独立集群搭建安装docker和docker-composedocker-compose编排docker-compose编排并运行容器 Spark集群官方案例测试写在最后 前言 很多同学都使用过经典的大数据分布式计算框架hadoop,其分布式…...
嵌入性视角下的企业集成创新网络演化过程
从嵌入性角度来看,集成创新网络以社会关系嵌入或结构嵌入的联结方式,实 现创新资源共享。由于规模经济和能力的差异,较高的信息复杂程度往往更强调网 络化和外部组织之间的联合而不是一体化。企业集成创新网络依靠创新网络结点上 企业的合…...

回归预测 | MATLAB实现FA-ELM萤火虫算法优化极限学习机多输入单输出回归预测(多指标,多图)
回归预测 | MATLAB实现FA-ELM萤火虫算法优化极限学习机多输入单输出回归预测(多指标,多图) 目录 回归预测 | MATLAB实现FA-ELM萤火虫算法优化极限学习机多输入单输出回归预测(多指标,多图)效果一览基本介绍…...

数据结构数组栈的实现
Hello,今天我们来实现一下数组栈,学完这个我们又更进一步了。 一、栈 栈的概念 栈是一种特殊的线性表,它只允许在固定的一端进行插入和删除元素的操作。 进行数据的插入和删除只在栈顶实现,另一端就是栈底。 栈的元素是后进先出。…...

成集云 | 抖店连接器客户静默下单催付数据同步钉钉 | 解决方案
源系统成集云目标系统 方案介绍 随着各品牌全渠道铺货,主播在平台上直播时客户下了订单后不能及时付款,第一时间客户收不到提醒,不仅造成了客户付款率下降,更大量消耗了企业的人力成本和经济。而成集云与钉钉深度合作࿰…...

【算法专题突破】双指针 - 复写零(2)
目录 1. 题目解析 2. 算法原理 3. 代码编写 写在最后: 1. 题目解析 题目链接:1089. 复写零 - 力扣(Leetcode) 我先来读题, 题目的意思非常的简单,其实就是, 遇到 0 就复制一个写进数组&a…...

【Java从0到1学习】11 Java集合框架
1. Collection 1.1 Java类中集合的关系图 1.2 集合类概述 在程序中可以通过数组来保存多个对象,但在某些情况下开发人员无法预先确定需要保存对象的个数,此时数组将不再适用,因为数组的长度不可变。例如,要保存一个学校的学生信…...

uniapp使用uni.chooseLocation()打开地图选择位置
使用uni.chooseLocation()打开地址选择位置: 在Uniapp源码视图进行设置 添加这个属性:"requiredPrivateInfos":["chooseLocation"] </template><view class"location_box"><view class"locatio…...

学习笔记|课后练习解答|电磁炉LED实战|逻辑运算|STC32G单片机视频开发教程(冲哥)|第八集(下):课后练习分析与解答
文章目录 课后练习解答需求分解增加KEY3控制代码如下: 第一版代码问题分析Tips:STC-ISP的设置 Tips:定时器实现完整电磁炉显示功能的代码测试流程 总结 课后练习解答 增加按键3,按下后表示启动,选择的对应的功能的LED…...

前端高频面试题 js中堆和栈的区别和浏览器的垃圾回收机制
一、 栈(stack)和 堆(heap) 栈(stack):是栈内存的简称,栈是自动分配相对固定大小的内存空间,并由系统自动释放,栈数据结构遵循FILO(first in last out)先进后出的原则,较为经典的就是乒乓球盒结…...
自然语言处理:大语言模型入门介绍
自然语言处理:大语言模型入门介绍 语言模型的历史演进大语言模型基础知识预训练Pre-traning微调Fine-Tuning指令微调Instruction Tuning对齐微调Alignment Tuning 提示Prompt上下文学习In-context Learning思维链Chain-of-thought提示开发(调用ChatGPT的…...

使用秘籍|如何实现图数据库 NebulaGraph 的高效建模、快速导入、性能优化
本文整理自 NebulaGraph PD 方扬在「NebulaGraph x KubeBlocks」meetup 上的演讲,主要包括以下内容: NebulaGraph 3.x 发展历程NebulaGraph 最佳实践 建模篇导入篇查询篇 NebulaGraph 3.x 的发展历程 NebulaGraph 自 2019 年 5 月开源发布第一个 alp…...

对于pycharm 运行的时候不在cmd中运行,而是在python控制台运行的情况,如何处理?
对于pycharm 运行的时候不在cmd中运行,而是在python控制台运行的情况,如何处理? 比如,你在运行你的代码的时候 它总在python控制台运行,十分难受 解决方法 在pycharm中设置下即可,很简单 选择运行点击…...
Spring MVC 二 :基于xml配置
创建一个基于xml配置的Spring MVC项目。 Idea创建新项目,pom文件引入依赖: <dependency><groupId>org.springframework</groupId><artifactId>spring-context</artifactId><version>5.2.12.RELEASE</version>…...
springboot aop方式实现接口入参校验
一、前言 在实际开发项目中,我们常常需要对接口入参进行校验,如果直接在业务代码中进行校验,则会显得代码非常冗余,也不够优雅,那么我们可以使用aop的方式校验,这样则会显得更优雅。 二、如何实现…...

解决git上传远程仓库时的大文件提交
在git中超过100M的文件会上传失败,而当一个文件超过50M时会给你警告,如下 warning: File XXXXXX is 51.42 MB; this is larger than GitHubs recommended maximum file size of 50.00 MB 解决这种问题,首先在项目的.git文件夹中找到.gitigno…...

HTML学习笔记02
HTML笔记02 页面结构分析 元素名描述header标题头部区域的内容(用于页面或页面中的一块区域)footer标记脚部区域的内容(用于整个页面或页面的一块区域)sectionWeb页面中的一块独立区域article独立的文章内容aside相关内容或应用…...

深入剖析AI大模型:大模型时代的 Prompt 工程全解析
今天聊的内容,我认为是AI开发里面非常重要的内容。它在AI开发里无处不在,当你对 AI 助手说 "用李白的风格写一首关于人工智能的诗",或者让翻译模型 "将这段合同翻译成商务日语" 时,输入的这句话就是 Prompt。…...

转转集团旗下首家二手多品类循环仓店“超级转转”开业
6月9日,国内领先的循环经济企业转转集团旗下首家二手多品类循环仓店“超级转转”正式开业。 转转集团创始人兼CEO黄炜、转转循环时尚发起人朱珠、转转集团COO兼红布林CEO胡伟琨、王府井集团副总裁祝捷等出席了开业剪彩仪式。 据「TMT星球」了解,“超级…...
TRS收益互换:跨境资本流动的金融创新工具与系统化解决方案
一、TRS收益互换的本质与业务逻辑 (一)概念解析 TRS(Total Return Swap)收益互换是一种金融衍生工具,指交易双方约定在未来一定期限内,基于特定资产或指数的表现进行现金流交换的协议。其核心特征包括&am…...

04-初识css
一、css样式引入 1.1.内部样式 <div style"width: 100px;"></div>1.2.外部样式 1.2.1.外部样式1 <style>.aa {width: 100px;} </style> <div class"aa"></div>1.2.2.外部样式2 <!-- rel内表面引入的是style样…...

学习STC51单片机32(芯片为STC89C52RCRC)OLED显示屏2
每日一言 今天的每一份坚持,都是在为未来积攒底气。 案例:OLED显示一个A 这边观察到一个点,怎么雪花了就是都是乱七八糟的占满了屏幕。。 解释 : 如果代码里信号切换太快(比如 SDA 刚变,SCL 立刻变&#…...

智能分布式爬虫的数据处理流水线优化:基于深度强化学习的数据质量控制
在数字化浪潮席卷全球的今天,数据已成为企业和研究机构的核心资产。智能分布式爬虫作为高效的数据采集工具,在大规模数据获取中发挥着关键作用。然而,传统的数据处理流水线在面对复杂多变的网络环境和海量异构数据时,常出现数据质…...

面向无人机海岸带生态系统监测的语义分割基准数据集
描述:海岸带生态系统的监测是维护生态平衡和可持续发展的重要任务。语义分割技术在遥感影像中的应用为海岸带生态系统的精准监测提供了有效手段。然而,目前该领域仍面临一个挑战,即缺乏公开的专门面向海岸带生态系统的语义分割基准数据集。受…...
C语言中提供的第三方库之哈希表实现
一. 简介 前面一篇文章简单学习了C语言中第三方库(uthash库)提供对哈希表的操作,文章如下: C语言中提供的第三方库uthash常用接口-CSDN博客 本文简单学习一下第三方库 uthash库对哈希表的操作。 二. uthash库哈希表操作示例 u…...

elementUI点击浏览table所选行数据查看文档
项目场景: table按照要求特定的数据变成按钮可以点击 解决方案: <el-table-columnprop"mlname"label"名称"align"center"width"180"><template slot-scope"scope"><el-buttonv-if&qu…...

零知开源——STM32F103RBT6驱动 ICM20948 九轴传感器及 vofa + 上位机可视化教程
STM32F1 本教程使用零知标准板(STM32F103RBT6)通过I2C驱动ICM20948九轴传感器,实现姿态解算,并通过串口将数据实时发送至VOFA上位机进行3D可视化。代码基于开源库修改优化,适合嵌入式及物联网开发者。在基础驱动上新增…...