当前位置: 首页 > news >正文

回归预测 | MATLAB实现GA-ELM遗传算法优化极限学习机多输入单输出回归预测(多指标,多图)

回归预测 | MATLAB实现GA-ELM遗传算法优化极限学习机多输入单输出回归预测(多指标,多图)

目录

    • 回归预测 | MATLAB实现GA-ELM遗传算法优化极限学习机多输入单输出回归预测(多指标,多图)
      • 效果一览
      • 基本介绍
      • 程序设计
      • 参考资料

效果一览

1
2
3

基本介绍

回归预测 | MATLAB实现GA-ELM遗传算法优化极限学习机多输入单输出回归预测(多指标,多图),输入多个特征,输出单个变量,多输入单输出回归预测;
多指标评价,代码质量极高;excel数据,方便替换,运行环境2018及以上。

程序设计

  • 完整源码和数据获取方式:私信回复GA-ELM遗传算法优化极限学习机多输入单输出回归预测(多指标,多图)
%%  清空环境变量
warning off             % 关闭报警信息
close all               % 关闭开启的图窗
clear                   % 清空变量
clc                     % 清空命令行%%  导入数据
res = xlsread('data.xlsx');%%  划分训练集和测试集
temp = randperm(103);P_train = res(temp(1: 80), 1: 7)';
T_train = res(temp(1: 80), 8)';
M = size(P_train, 2);P_test = res(temp(81: end), 1: 7)';
T_test = res(temp(81: end), 8)';
N = size(P_test, 2);%%  数据归一化
[p_train, ps_input] = mapminmax(P_train, 0, 1);
p_test = mapminmax('apply', P_test, ps_input);[t_train, ps_output] = mapminmax(T_train, 0, 1);
t_test = mapminmax('apply', T_test, ps_output);%%  仿真测试
t_sim1 = sim(net, p_train);
t_sim2 = sim(net, p_test);%%  数据反归一化
T_sim1 = mapminmax('reverse', t_sim1, ps_output);
T_sim2 = mapminmax('reverse', t_sim2, ps_output);%%  均方根误差
error1 = sqrt(sum((T_sim1 - T_train).^2) ./ M);
error2 = sqrt(sum((T_sim2 - T_test ).^2) ./ N);%%  相关指标计算
% 决定系数 R2
R1 = 1 - norm(T_train - T_sim1)^2 / norm(T_train - mean(T_train))^2;
R2 = 1 - norm(T_test -  T_sim2)^2 / norm(T_test -  mean(T_test ))^2;disp(['训练集数据的R2为:', num2str(R1)])
disp(['测试集数据的R2为:', num2str(R2)])% 平均绝对误差 MAE
mae1 = sum(abs(T_sim1 - T_train)) ./ M ;
mae2 = sum(abs(T_sim2 - T_test )) ./ N ;disp(['训练集数据的MAE为:', num2str(mae1)])
disp(['测试集数据的MAE为:', num2str(mae2)])% 平均相对误差 MBE
mbe1 = sum(T_sim1 - T_train) ./ M ;
mbe2 = sum(T_sim2 - T_test ) ./ N ;disp(['训练集数据的MBE为:', num2str(mbe1)])
disp(['测试集数据的MBE为:', num2str(mbe2)])

参考资料

[1] https://blog.csdn.net/kjm13182345320/article/details/129215161
[2] https://blog.csdn.net/kjm13182345320/article/details/128105718

相关文章:

回归预测 | MATLAB实现GA-ELM遗传算法优化极限学习机多输入单输出回归预测(多指标,多图)

回归预测 | MATLAB实现GA-ELM遗传算法优化极限学习机多输入单输出回归预测(多指标,多图) 目录 回归预测 | MATLAB实现GA-ELM遗传算法优化极限学习机多输入单输出回归预测(多指标,多图)效果一览基本介绍程序…...

SpringCloud学习笔记(九)_使用Java类加载SpringBoot、SpringCloud配置文件

我们都知道平常在使用SpringBoot和SpringCloud的时候,如果需要加载一两个配置文件的话我们通常使用Value(“${属性名称}”)注解去加载。但是如果配置文件属性特别多的时候使用这种方式就显得特别的不友好了。 比如说,我们要加载下方这个名为application.…...

三次握手四次挥手之全连接半连接队列

什么是全连接半连接 在 TCP 三次握手的时候,Linux 内核会维护两个队列,分别是: 半连接队列,也称 Listen 队列;全连接队列,也称 accept 队列; 工作原理 每一个socket执行listen时&#xff0c…...

Racknerd便宜高性价比服务器汇总

介绍 Racknerd是近年来比较良心的高性价比主机商了 我制作了Racknerd服务器看板,统计所有在售的VPS和独立服务器 支持多栏目筛选以及排序,帮助你挑选目前在售的主机 也支持筛选最近上架、补货的机器 注意 1.爬虫数据可能有延迟性、不准确性&#xff…...

JavaScript 基础知识回顾与复习---关于this

在JavaScript中,this是一个关键字,它在不同的上下文中引用不同的对象,其this的绑定是动态的,这主要取决于函数的调用方式。this的绑定是函数运行时才确定的而不是编写是就绑定。在我看来this就像魔法一样让人难以理解掌握&#xf…...

Lua之Lua源文件批量转换为luac字节码文件

准备的工具:luac.exe CSDNhttps://mp.csdn.net/mp_download/manage/download/UpDetailed Unity版: using System; using System.Collections; using System.Collections.Generic; using System.IO; using UnityEditor; using UnityEngine;public static class Bat…...

简历V1.0问题合集 8/25-26

记录完 去看相应的知识点 对应着修改 (带着问题总结 效果更好 把这一部分先过完) Axois 1.axios.interceptors.request.use 和 response.use主要操作了什么了 你简历说了封装。这个要了解 2.axios get post put delete 请求里payload 、query string …...

P1052 [NOIP2005 提高组] 过河

[P1052 NOIP2005 提高组] 过河 - 洛谷 | 计算机科学教育新生态 (luogu.com.cn) 问题描述:给定长度L,和一次可以跳动的长度 s 到 t,给定m个石头的位置,求最少经过多少个石头可以超过L。 思路:如果L很小的话&#xff0…...

ArrayList和Vector及LinkedList的区别

1.ArrayList和Vector的区别 第一句话:ArrayList和Vector底层都是数组实现的,初始容量都为10;在ArrayList的底层,是通过定义一个DEFAULT_CAPACITY的常量来指定的,而Vector的底层,是直接在空参构造中&#x…...

HVV爆火漏洞:最新 WPS RCE (远程命令执行) 复现

最近HVV爆出的很火的WPS命令执行漏洞&#xff0c;其实并不是0DAY&#xff0c;早在2019年就出现了&#xff0c;只不过最近EXP才公开。接下来我们来复现一遍。 0x00 影响版本 WPS Office 2023 个人版 < 11.1.0.15120WPS Office 2019 企业版 < 11.8.2.12085 0x01 环境配置…...

我的128天创作纪念日-东离与糖宝

文章目录 机缘收获日常成就憧憬 不知不觉我也迎来了自己的128天创作纪念日&#xff0c;一起来看看我有什么想对大家说的吧 机缘 我的写博客之旅始于参加了代码随想录算法训练营。在训练营期间&#xff0c;代码随想录作者卡尔建议我们坚持每天写博客记录刷题学习的进度和心得体…...

卷积神经网络——下篇【深度学习】【PyTorch】【d2l】

文章目录 5、卷积神经网络5.10、⭐批量归一化5.10.1、理论部分5.10.2、代码部分 5.11、⭐残差网络&#xff08;ResNet&#xff09;5.11.1、理论部分5.11.2、代码部分 话题闲谈 5、卷积神经网络 5.10、⭐批量归一化 5.10.1、理论部分 批量归一化可以解决深层网络中梯度消失和…...

cas md5加密

CAS Authentication Credentials #cas.authn.accept.userscasuser::Mellon 查询账号密码SQL&#xff0c;必须包含密码字段 cas.authn.jdbc.query[0].sqlselect * from ca_user where username? 指定上面的SQL查询字段名&#xff08;必须&#xff09; cas.authn.jdbc.query…...

[管理与领导-51]:IT基层管理者 - 8项核心技能 - 6 - 流程

前言&#xff1a; 管理者存在的价值就是制定目标&#xff0c;即目标管理、通过团队&#xff08;他人&#xff09;拿到结果。 要想通过他人拿到结果&#xff1a; &#xff08;1&#xff09;目标&#xff1a;制定符合SMART原则的符合业务需求的目标&#xff0c;团队跳一跳就可以…...

天翼物联、汕头电信与汕头大学共建新一代信息技术与数字创新(物联网)联合实验室

近日&#xff0c;在工业和信息化部和广东省人民政府共同主办的2023中国数字经济创新发展大会上&#xff0c;天翼物联、汕头电信与汕头大学共建“新一代信息技术与数字创新&#xff08;物联网&#xff09;”联合实验室签约仪式举行。汕头大学校长郝志峰、中国电信广东公司总经理…...

Failed to load local image resource/images/1.jpg无法加载本地图片资源

微信小程序开发无法加载本地图片 先放报错图片 绝对路径不行&#xff0c; <image src"../../images/1.jpg" mode"heightFix"></image>使用相对路径就可以了 <image src"../../images/1.jpg" mode"heightFix"><…...

Go和Java实现责任链模式

Go和Java实现责任链模式 下面通过一个审批流程的案例来说明责任链模式的使用。 1、责任链模式 责任链模式为请求创建了一个接收者对象的链。这种模式给予请求的类型&#xff0c;对请求的发送者和接收者进行解耦。这 种类型的设计模式属于行为型模式。 在这种模式中&#x…...

C#+GDAL影像处理笔记08:生成DEM的图阔范围线

目录 1 实现思路 2 源码及解析 1 实现思路 首先获取DEM数据的转换参数信息,这个信息记录了DEM的放射变换参数,包括左上角X,X方向分辨率、0、左上角Y、0、Y方向的分辨率【负值】等信息。接着是根据转换参数,计算DEM分幅数据的四至范围坐标;主要用到上一步得到的转换参数信…...

敏捷研发管理软件及敏捷管理流程

Scrum中非常强调公开、透明、直接有效的沟通&#xff0c;这也是“可视化的管理工具”在敏捷开发中如此重要的原因之一。通过“可视化的管理工具”让所有人直观的看到需求&#xff0c;故事&#xff0c;任务之间的流转状态&#xff0c;可以使团队成员更加快速适应敏捷开发流程。 …...

Mac OS 13.4.1 搜狗输入法导致的卡顿问题

一、Mac OS 系统版本 搜狗输入法已经更新到最新 二、解决方案 解决方案一 在我的电脑上面需要关闭 VSCode 和 Chrmoe 以后&#xff0c;搜狗输入法回复正常。 解决方案二 强制重启一下搜狗输入法。 可以用 unix 定时任务去隔 2个小时自动 kill 掉一次进程 # kill 掉 mac …...

XML Group端口详解

在XML数据映射过程中&#xff0c;经常需要对数据进行分组聚合操作。例如&#xff0c;当处理包含多个物料明细的XML文件时&#xff0c;可能需要将相同物料号的明细归为一组&#xff0c;或对相同物料号的数量进行求和计算。传统实现方式通常需要编写脚本代码&#xff0c;增加了开…...

从零实现富文本编辑器#5-编辑器选区模型的状态结构表达

先前我们总结了浏览器选区模型的交互策略&#xff0c;并且实现了基本的选区操作&#xff0c;还调研了自绘选区的实现。那么相对的&#xff0c;我们还需要设计编辑器的选区表达&#xff0c;也可以称为模型选区。编辑器中应用变更时的操作范围&#xff0c;就是以模型选区为基准来…...

云启出海,智联未来|阿里云网络「企业出海」系列客户沙龙上海站圆满落地

借阿里云中企出海大会的东风&#xff0c;以**「云启出海&#xff0c;智联未来&#xff5c;打造安全可靠的出海云网络引擎」为主题的阿里云企业出海客户沙龙云网络&安全专场于5.28日下午在上海顺利举办&#xff0c;现场吸引了来自携程、小红书、米哈游、哔哩哔哩、波克城市、…...

2.Vue编写一个app

1.src中重要的组成 1.1main.ts // 引入createApp用于创建应用 import { createApp } from "vue"; // 引用App根组件 import App from ./App.vue;createApp(App).mount(#app)1.2 App.vue 其中要写三种标签 <template> <!--html--> </template>…...

ETLCloud可能遇到的问题有哪些?常见坑位解析

数据集成平台ETLCloud&#xff0c;主要用于支持数据的抽取&#xff08;Extract&#xff09;、转换&#xff08;Transform&#xff09;和加载&#xff08;Load&#xff09;过程。提供了一个简洁直观的界面&#xff0c;以便用户可以在不同的数据源之间轻松地进行数据迁移和转换。…...

嵌入式学习笔记DAY33(网络编程——TCP)

一、网络架构 C/S &#xff08;client/server 客户端/服务器&#xff09;&#xff1a;由客户端和服务器端两个部分组成。客户端通常是用户使用的应用程序&#xff0c;负责提供用户界面和交互逻辑 &#xff0c;接收用户输入&#xff0c;向服务器发送请求&#xff0c;并展示服务…...

CSS | transition 和 transform的用处和区别

省流总结&#xff1a; transform用于变换/变形&#xff0c;transition是动画控制器 transform 用来对元素进行变形&#xff0c;常见的操作如下&#xff0c;它是立即生效的样式变形属性。 旋转 rotate(角度deg)、平移 translateX(像素px)、缩放 scale(倍数)、倾斜 skewX(角度…...

MacOS下Homebrew国内镜像加速指南(2025最新国内镜像加速)

macos brew国内镜像加速方法 brew install 加速formula.jws.json下载慢加速 &#x1f37a; 最新版brew安装慢到怀疑人生&#xff1f;别怕&#xff0c;教你轻松起飞&#xff01; 最近Homebrew更新至最新版&#xff0c;每次执行 brew 命令时都会自动从官方地址 https://formulae.…...

抽象类和接口(全)

一、抽象类 1.概念&#xff1a;如果⼀个类中没有包含⾜够的信息来描绘⼀个具体的对象&#xff0c;这样的类就是抽象类。 像是没有实际⼯作的⽅法,我们可以把它设计成⼀个抽象⽅法&#xff0c;包含抽象⽅法的类我们称为抽象类。 2.语法 在Java中&#xff0c;⼀个类如果被 abs…...

【Post-process】【VBA】ETABS VBA FrameObj.GetNameList and write to EXCEL

ETABS API实战:导出框架元素数据到Excel 在结构工程师的日常工作中,经常需要从ETABS模型中提取框架元素信息进行后续分析。手动复制粘贴不仅耗时,还容易出错。今天我们来用简单的VBA代码实现自动化导出。 🎯 我们要实现什么? 一键点击,就能将ETABS中所有框架元素的基…...