当前位置: 首页 > news >正文

回归预测 | MATLAB实现GA-ELM遗传算法优化极限学习机多输入单输出回归预测(多指标,多图)

回归预测 | MATLAB实现GA-ELM遗传算法优化极限学习机多输入单输出回归预测(多指标,多图)

目录

    • 回归预测 | MATLAB实现GA-ELM遗传算法优化极限学习机多输入单输出回归预测(多指标,多图)
      • 效果一览
      • 基本介绍
      • 程序设计
      • 参考资料

效果一览

1
2
3

基本介绍

回归预测 | MATLAB实现GA-ELM遗传算法优化极限学习机多输入单输出回归预测(多指标,多图),输入多个特征,输出单个变量,多输入单输出回归预测;
多指标评价,代码质量极高;excel数据,方便替换,运行环境2018及以上。

程序设计

  • 完整源码和数据获取方式:私信回复GA-ELM遗传算法优化极限学习机多输入单输出回归预测(多指标,多图)
%%  清空环境变量
warning off             % 关闭报警信息
close all               % 关闭开启的图窗
clear                   % 清空变量
clc                     % 清空命令行%%  导入数据
res = xlsread('data.xlsx');%%  划分训练集和测试集
temp = randperm(103);P_train = res(temp(1: 80), 1: 7)';
T_train = res(temp(1: 80), 8)';
M = size(P_train, 2);P_test = res(temp(81: end), 1: 7)';
T_test = res(temp(81: end), 8)';
N = size(P_test, 2);%%  数据归一化
[p_train, ps_input] = mapminmax(P_train, 0, 1);
p_test = mapminmax('apply', P_test, ps_input);[t_train, ps_output] = mapminmax(T_train, 0, 1);
t_test = mapminmax('apply', T_test, ps_output);%%  仿真测试
t_sim1 = sim(net, p_train);
t_sim2 = sim(net, p_test);%%  数据反归一化
T_sim1 = mapminmax('reverse', t_sim1, ps_output);
T_sim2 = mapminmax('reverse', t_sim2, ps_output);%%  均方根误差
error1 = sqrt(sum((T_sim1 - T_train).^2) ./ M);
error2 = sqrt(sum((T_sim2 - T_test ).^2) ./ N);%%  相关指标计算
% 决定系数 R2
R1 = 1 - norm(T_train - T_sim1)^2 / norm(T_train - mean(T_train))^2;
R2 = 1 - norm(T_test -  T_sim2)^2 / norm(T_test -  mean(T_test ))^2;disp(['训练集数据的R2为:', num2str(R1)])
disp(['测试集数据的R2为:', num2str(R2)])% 平均绝对误差 MAE
mae1 = sum(abs(T_sim1 - T_train)) ./ M ;
mae2 = sum(abs(T_sim2 - T_test )) ./ N ;disp(['训练集数据的MAE为:', num2str(mae1)])
disp(['测试集数据的MAE为:', num2str(mae2)])% 平均相对误差 MBE
mbe1 = sum(T_sim1 - T_train) ./ M ;
mbe2 = sum(T_sim2 - T_test ) ./ N ;disp(['训练集数据的MBE为:', num2str(mbe1)])
disp(['测试集数据的MBE为:', num2str(mbe2)])

参考资料

[1] https://blog.csdn.net/kjm13182345320/article/details/129215161
[2] https://blog.csdn.net/kjm13182345320/article/details/128105718

相关文章:

回归预测 | MATLAB实现GA-ELM遗传算法优化极限学习机多输入单输出回归预测(多指标,多图)

回归预测 | MATLAB实现GA-ELM遗传算法优化极限学习机多输入单输出回归预测(多指标,多图) 目录 回归预测 | MATLAB实现GA-ELM遗传算法优化极限学习机多输入单输出回归预测(多指标,多图)效果一览基本介绍程序…...

SpringCloud学习笔记(九)_使用Java类加载SpringBoot、SpringCloud配置文件

我们都知道平常在使用SpringBoot和SpringCloud的时候,如果需要加载一两个配置文件的话我们通常使用Value(“${属性名称}”)注解去加载。但是如果配置文件属性特别多的时候使用这种方式就显得特别的不友好了。 比如说,我们要加载下方这个名为application.…...

三次握手四次挥手之全连接半连接队列

什么是全连接半连接 在 TCP 三次握手的时候,Linux 内核会维护两个队列,分别是: 半连接队列,也称 Listen 队列;全连接队列,也称 accept 队列; 工作原理 每一个socket执行listen时&#xff0c…...

Racknerd便宜高性价比服务器汇总

介绍 Racknerd是近年来比较良心的高性价比主机商了 我制作了Racknerd服务器看板,统计所有在售的VPS和独立服务器 支持多栏目筛选以及排序,帮助你挑选目前在售的主机 也支持筛选最近上架、补货的机器 注意 1.爬虫数据可能有延迟性、不准确性&#xff…...

JavaScript 基础知识回顾与复习---关于this

在JavaScript中,this是一个关键字,它在不同的上下文中引用不同的对象,其this的绑定是动态的,这主要取决于函数的调用方式。this的绑定是函数运行时才确定的而不是编写是就绑定。在我看来this就像魔法一样让人难以理解掌握&#xf…...

Lua之Lua源文件批量转换为luac字节码文件

准备的工具:luac.exe CSDNhttps://mp.csdn.net/mp_download/manage/download/UpDetailed Unity版: using System; using System.Collections; using System.Collections.Generic; using System.IO; using UnityEditor; using UnityEngine;public static class Bat…...

简历V1.0问题合集 8/25-26

记录完 去看相应的知识点 对应着修改 (带着问题总结 效果更好 把这一部分先过完) Axois 1.axios.interceptors.request.use 和 response.use主要操作了什么了 你简历说了封装。这个要了解 2.axios get post put delete 请求里payload 、query string …...

P1052 [NOIP2005 提高组] 过河

[P1052 NOIP2005 提高组] 过河 - 洛谷 | 计算机科学教育新生态 (luogu.com.cn) 问题描述:给定长度L,和一次可以跳动的长度 s 到 t,给定m个石头的位置,求最少经过多少个石头可以超过L。 思路:如果L很小的话&#xff0…...

ArrayList和Vector及LinkedList的区别

1.ArrayList和Vector的区别 第一句话:ArrayList和Vector底层都是数组实现的,初始容量都为10;在ArrayList的底层,是通过定义一个DEFAULT_CAPACITY的常量来指定的,而Vector的底层,是直接在空参构造中&#x…...

HVV爆火漏洞:最新 WPS RCE (远程命令执行) 复现

最近HVV爆出的很火的WPS命令执行漏洞&#xff0c;其实并不是0DAY&#xff0c;早在2019年就出现了&#xff0c;只不过最近EXP才公开。接下来我们来复现一遍。 0x00 影响版本 WPS Office 2023 个人版 < 11.1.0.15120WPS Office 2019 企业版 < 11.8.2.12085 0x01 环境配置…...

我的128天创作纪念日-东离与糖宝

文章目录 机缘收获日常成就憧憬 不知不觉我也迎来了自己的128天创作纪念日&#xff0c;一起来看看我有什么想对大家说的吧 机缘 我的写博客之旅始于参加了代码随想录算法训练营。在训练营期间&#xff0c;代码随想录作者卡尔建议我们坚持每天写博客记录刷题学习的进度和心得体…...

卷积神经网络——下篇【深度学习】【PyTorch】【d2l】

文章目录 5、卷积神经网络5.10、⭐批量归一化5.10.1、理论部分5.10.2、代码部分 5.11、⭐残差网络&#xff08;ResNet&#xff09;5.11.1、理论部分5.11.2、代码部分 话题闲谈 5、卷积神经网络 5.10、⭐批量归一化 5.10.1、理论部分 批量归一化可以解决深层网络中梯度消失和…...

cas md5加密

CAS Authentication Credentials #cas.authn.accept.userscasuser::Mellon 查询账号密码SQL&#xff0c;必须包含密码字段 cas.authn.jdbc.query[0].sqlselect * from ca_user where username? 指定上面的SQL查询字段名&#xff08;必须&#xff09; cas.authn.jdbc.query…...

[管理与领导-51]:IT基层管理者 - 8项核心技能 - 6 - 流程

前言&#xff1a; 管理者存在的价值就是制定目标&#xff0c;即目标管理、通过团队&#xff08;他人&#xff09;拿到结果。 要想通过他人拿到结果&#xff1a; &#xff08;1&#xff09;目标&#xff1a;制定符合SMART原则的符合业务需求的目标&#xff0c;团队跳一跳就可以…...

天翼物联、汕头电信与汕头大学共建新一代信息技术与数字创新(物联网)联合实验室

近日&#xff0c;在工业和信息化部和广东省人民政府共同主办的2023中国数字经济创新发展大会上&#xff0c;天翼物联、汕头电信与汕头大学共建“新一代信息技术与数字创新&#xff08;物联网&#xff09;”联合实验室签约仪式举行。汕头大学校长郝志峰、中国电信广东公司总经理…...

Failed to load local image resource/images/1.jpg无法加载本地图片资源

微信小程序开发无法加载本地图片 先放报错图片 绝对路径不行&#xff0c; <image src"../../images/1.jpg" mode"heightFix"></image>使用相对路径就可以了 <image src"../../images/1.jpg" mode"heightFix"><…...

Go和Java实现责任链模式

Go和Java实现责任链模式 下面通过一个审批流程的案例来说明责任链模式的使用。 1、责任链模式 责任链模式为请求创建了一个接收者对象的链。这种模式给予请求的类型&#xff0c;对请求的发送者和接收者进行解耦。这 种类型的设计模式属于行为型模式。 在这种模式中&#x…...

C#+GDAL影像处理笔记08:生成DEM的图阔范围线

目录 1 实现思路 2 源码及解析 1 实现思路 首先获取DEM数据的转换参数信息,这个信息记录了DEM的放射变换参数,包括左上角X,X方向分辨率、0、左上角Y、0、Y方向的分辨率【负值】等信息。接着是根据转换参数,计算DEM分幅数据的四至范围坐标;主要用到上一步得到的转换参数信…...

敏捷研发管理软件及敏捷管理流程

Scrum中非常强调公开、透明、直接有效的沟通&#xff0c;这也是“可视化的管理工具”在敏捷开发中如此重要的原因之一。通过“可视化的管理工具”让所有人直观的看到需求&#xff0c;故事&#xff0c;任务之间的流转状态&#xff0c;可以使团队成员更加快速适应敏捷开发流程。 …...

Mac OS 13.4.1 搜狗输入法导致的卡顿问题

一、Mac OS 系统版本 搜狗输入法已经更新到最新 二、解决方案 解决方案一 在我的电脑上面需要关闭 VSCode 和 Chrmoe 以后&#xff0c;搜狗输入法回复正常。 解决方案二 强制重启一下搜狗输入法。 可以用 unix 定时任务去隔 2个小时自动 kill 掉一次进程 # kill 掉 mac …...

(LeetCode 每日一题) 3442. 奇偶频次间的最大差值 I (哈希、字符串)

题目&#xff1a;3442. 奇偶频次间的最大差值 I 思路 &#xff1a;哈希&#xff0c;时间复杂度0(n)。 用哈希表来记录每个字符串中字符的分布情况&#xff0c;哈希表这里用数组即可实现。 C版本&#xff1a; class Solution { public:int maxDifference(string s) {int a[26]…...

铭豹扩展坞 USB转网口 突然无法识别解决方法

当 USB 转网口扩展坞在一台笔记本上无法识别,但在其他电脑上正常工作时,问题通常出在笔记本自身或其与扩展坞的兼容性上。以下是系统化的定位思路和排查步骤,帮助你快速找到故障原因: 背景: 一个M-pard(铭豹)扩展坞的网卡突然无法识别了,扩展出来的三个USB接口正常。…...

多云管理“拦路虎”:深入解析网络互联、身份同步与成本可视化的技术复杂度​

一、引言&#xff1a;多云环境的技术复杂性本质​​ 企业采用多云策略已从技术选型升维至生存刚需。当业务系统分散部署在多个云平台时&#xff0c;​​基础设施的技术债呈现指数级积累​​。网络连接、身份认证、成本管理这三大核心挑战相互嵌套&#xff1a;跨云网络构建数据…...

从零实现富文本编辑器#5-编辑器选区模型的状态结构表达

先前我们总结了浏览器选区模型的交互策略&#xff0c;并且实现了基本的选区操作&#xff0c;还调研了自绘选区的实现。那么相对的&#xff0c;我们还需要设计编辑器的选区表达&#xff0c;也可以称为模型选区。编辑器中应用变更时的操作范围&#xff0c;就是以模型选区为基准来…...

QMC5883L的驱动

简介 本篇文章的代码已经上传到了github上面&#xff0c;开源代码 作为一个电子罗盘模块&#xff0c;我们可以通过I2C从中获取偏航角yaw&#xff0c;相对于六轴陀螺仪的yaw&#xff0c;qmc5883l几乎不会零飘并且成本较低。 参考资料 QMC5883L磁场传感器驱动 QMC5883L磁力计…...

基于Flask实现的医疗保险欺诈识别监测模型

基于Flask实现的医疗保险欺诈识别监测模型 项目截图 项目简介 社会医疗保险是国家通过立法形式强制实施&#xff0c;由雇主和个人按一定比例缴纳保险费&#xff0c;建立社会医疗保险基金&#xff0c;支付雇员医疗费用的一种医疗保险制度&#xff0c; 它是促进社会文明和进步的…...

使用分级同态加密防御梯度泄漏

抽象 联邦学习 &#xff08;FL&#xff09; 支持跨分布式客户端进行协作模型训练&#xff0c;而无需共享原始数据&#xff0c;这使其成为在互联和自动驾驶汽车 &#xff08;CAV&#xff09; 等领域保护隐私的机器学习的一种很有前途的方法。然而&#xff0c;最近的研究表明&…...

Golang dig框架与GraphQL的完美结合

将 Go 的 Dig 依赖注入框架与 GraphQL 结合使用&#xff0c;可以显著提升应用程序的可维护性、可测试性以及灵活性。 Dig 是一个强大的依赖注入容器&#xff0c;能够帮助开发者更好地管理复杂的依赖关系&#xff0c;而 GraphQL 则是一种用于 API 的查询语言&#xff0c;能够提…...

今日科技热点速览

&#x1f525; 今日科技热点速览 &#x1f3ae; 任天堂Switch 2 正式发售 任天堂新一代游戏主机 Switch 2 今日正式上线发售&#xff0c;主打更强图形性能与沉浸式体验&#xff0c;支持多模态交互&#xff0c;受到全球玩家热捧 。 &#x1f916; 人工智能持续突破 DeepSeek-R1&…...

【学习笔记】深入理解Java虚拟机学习笔记——第4章 虚拟机性能监控,故障处理工具

第2章 虚拟机性能监控&#xff0c;故障处理工具 4.1 概述 略 4.2 基础故障处理工具 4.2.1 jps:虚拟机进程状况工具 命令&#xff1a;jps [options] [hostid] 功能&#xff1a;本地虚拟机进程显示进程ID&#xff08;与ps相同&#xff09;&#xff0c;可同时显示主类&#x…...