当前位置: 首页 > news >正文

算法修炼Day60|● 84.柱状图中最大的矩形

 LeetCode:84.柱状图中最大的矩形

84. 柱状图中最大的矩形 - 力扣(LeetCode)

1.思路

双指针思路,以当前数组为中心,借助两个数组存放当前数柱左右两侧小于当前数柱高度的索引,进行h*w的计算。注意首尾节点的左侧索引和右侧索引需要单独声名为0.

单调栈,在原数组的基础上定义一个新的数组,对其进行首尾节点的扩容。思路延续收集雨水。

2.代码实现
class Solution {public int largestRectangleArea(int[] heights) {​    Stack<Integer> stack = new Stack<>();​    // 数组扩容​    int[] newHeights = new int[heights.length + 2];​    newHeights[0] = 0;​    newHeights[newHeights.length - 1] = 0;​    for (int i = 0; i < heights.length; i++) {​      newHeights[i + 1] = heights[i];​    }​    heights = newHeights; // 改变数组引用​    stack.add(0);​    int result = 0;​    for (int i = 1; i < heights.length; i++) {​      if (heights[i] > heights[stack.peek()]) { // 入栈​        stack.add(i);​      } else if (heights[i] == heights[stack.peek()]) { ​        stack.pop(); // 弹出​        stack.add(i); // 入栈​      } else {​        while (heights[i] < heights[stack.peek()]) {​          int mid = stack.peek(); // 当前数值柱子​          stack.pop();​          int left = stack.peek();​          int right = i;​          int w = right - left - 1;​          int h = heights[mid];​          result = Math.max(result, w * h);​        }​        stack.add(i);​      }​    }​    return result;}}
3.复杂度分析:

时间复杂度:O(n).

空间复杂度:O(n).符合单调递减的情况时,全部入栈。

相关文章:

算法修炼Day60|● 84.柱状图中最大的矩形

LeetCode:84.柱状图中最大的矩形 84. 柱状图中最大的矩形 - 力扣&#xff08;LeetCode&#xff09; 1.思路 双指针思路&#xff0c;以当前数组为中心&#xff0c;借助两个数组存放当前数柱左右两侧小于当前数柱高度的索引&#xff0c;进行h*w的计算。注意首尾节点的左侧索引…...

前端面试题css(一)

题目 盒子垂直水平居中如何实现text-align:center vertical-align: middle水平垂直居中布局positionmargin水平垂直居中布局 grid栅格化布局及其兼容性介绍一下BFC触发 BFC 的条件包括&#xff1a;常见的用途包括&#xff1a; 写过的动画效果overflow有哪些属性visible&#x…...

.NETCORE中关于swagger的分组

有些时候我们的项目接口过多&#xff0c;就希望对应的swagger能够执行分组&#xff0c;网络上的几乎是千篇一律的分组方法&#xff0c;会累死&#xff01; 这里提供一个更加高效的分组方法&#xff0c;比如你可以说哪些模块分到哪个组&#xff0c;哪些权限分到哪个组&#xff…...

4.1011

目录 四次挥手中收到乱序的FIN包会如何处理&#xff1f; 在 TIME_WAIT 状态的 TCP 连接&#xff0c;收到 SYN 后会发生什么&#xff1f; 四次挥手中收到乱序的FIN包会如何处理&#xff1f; 如果FIN报文比数据包先道道客户端&#xff0c;此时FIN是一个乱序报文&#xff0c;此时…...

uniapp中引入axios的错误?

场景 在unaipp中使用axios npm i axios 下载完成后 然后在页面中使用 axios.get(“http://3000/searchS”) 然后报错 Adapter http’ is not available in the build 原因 在 UniApp 中使用 Axios 发送 HTTP 请求时&#xff0c;如果出现错误 “Adapter http’ is not available…...

Discuz!论坛发帖标题字数限制80字符可以修改吗?修改发帖标题字数的方法

Discuz!论坛发帖标题字数限制80字符修改方法 1.数据库修改2.修改JS验证字符数文件3.修改模板中写死的字符限制数4.修改函数验证文件5.修改语言包文件6.更新缓存 Discuz X3.4论坛网站帖子标题字数限制80字符&#xff0c;当我们想使用长标题的时候就得一删再删&#xff0c;实在是…...

R语言画样本不均衡组的箱线图

# 导入 ggplot2 包 library(ggplot2)# 示例数据框&#xff0c;包含数值数据和分组信息 data <- data.frame(Group c(rep("Group A",10), rep("Group B",15),rep("Group C",20)),Value c(rnorm(10, mean 10, sd 2),rnorm(15, mean 15, sd…...

ArcGIS学习总结(19)——要素转点与空间连接(属性表字段映射)

1.在新创建的面矢量数据的属性表中没有对应的字段信息&#xff0c;为了能够和有属性信息的数据进行匹配&#xff0c;使其具有对应字段的信息。 2.需要匹配的矢量文件属性表信息。 3.对新创建的矢量文件执行要素转点&#xff1a;数据管理工具→要素→要素转点。 4.选择分析工…...

【每日一题Day306】LC228汇总区间 | 双指针

汇总区间【LC228】 给定一个 无重复元素 的 有序 整数数组 nums 。 返回 恰好覆盖数组中所有数字 的 最小有序 区间范围列表 。也就是说&#xff0c;nums 的每个元素都恰好被某个区间范围所覆盖&#xff0c;并且不存在属于某个范围但不属于 nums 的数字 x 。 列表中的每个区间范…...

vue中实现echarts三维散点图

需要安装 echarts 同时引入 echarts-gl 我安装的版本&#xff1a; "echarts": "^5.3.2", "echarts-gl": "^2.0.9", import Vue from "vue"; import * as echarts from "echarts"; Vue.prototype.$echarts echa…...

多头自注意力机制的代码实现

文章目录 1、自注意力机制2、多头注意力机制 transformer的整体结构&#xff1a; 1、自注意力机制 自注意力机制如下&#xff1a; 计算过程&#xff1a; 代码如下&#xff1a; class ScaledDotProductAttention(nn.Module):def __init__(self, embed_dim, key_size, value_…...

抽象工厂模式

目录 了解抽象工厂模式前的前置知识 什么是抽象工厂模式&#xff1f; 为什么要提出抽象工厂模式&#xff1f; 抽象工厂模式中的四大角色&#xff1f; 抽象工厂模式的优缺点&#xff1f; 抽象工厂模式的适用场景&#xff1f; 了解抽象工厂模式前的前置知识 在讲抽象工厂模式…...

登录校验-Filter-详解

目录 执行流程 拦截路径 过滤器链 小结 执行流程 过滤器Filter拦截到请求之后&#xff0c;首先执行方放行之前的逻辑&#xff0c;然后执行放行操作&#xff08;doFilter&#xff09;&#xff0c;然后会访问对应的Web资源&#xff08;对应的Controller类&#xff09;&#…...

堆栈方法区笔记记录

成员变量分两种: 1)实例变量:没有static修饰&#xff0c;属于对象&#xff0c;存储在堆中&#xff0c;有几个对象就有几份&#xff0c;通过对象点来访问 2)静态变量:由static修饰&#xff0c;属于类&#xff0c;存储在方法区中&#xff0c;只有一份&#xff0c;通过类名点来访…...

新版微信小程序获取用户手机号

小程序手机号验证组件有两种 手机号快速验证组件 //原生写法 <button open-type"getPhoneNumber" bindgetphonenumber"getPhoneNumber"></button>Page({getPhoneNumber (e) {console.log(e.detail.code)} })uniapp写法 <button open-type…...

CSS实践 —— 悬浮盒子阴影加上移效果

悬浮盒子阴影加上移效果 代码 代码 <!DOCTYPE html> <html lang"en"><head><meta charset"UTF-8"><title>Title</title><style>body{background-color: #f5f5f5;}.shadow {width: 100px;height: 100px;margin:…...

安全测试基础知识

软件安全测试是评估和测试系统以发现系统及其数据的安全风险和漏洞的过程。没有通用术语&#xff0c;但出于我们的目的&#xff0c;我们将评估定义为分析和发现漏洞&#xff0c;而不尝试实际利用这些漏洞。我们将测试定义为发现和尝试利用漏洞。 安全测试通常根据要测试的漏洞…...

列表首屏毫秒级加载与自动滚动定位方案

引用自 摸鱼wiki 场景 <template><div ref"commentsRef"><divv-for"comment in displayComments":key"comment.id":data-cell-id"comment.id"class"card">{{ comment.data }}</div></div> &…...

小区物业业主管理信息系统设计的设计与实现(论文+源码)_kaic

摘 要 随着互联网的发展&#xff0c;网络技术的发展变得极其重要&#xff0c;所以依靠计算机处理业务成为了一种社会普遍的现状。管理方式也自然而然的向着现代化技术方向而改变&#xff0c;所以纯人工管理方式在越来越完善的现代化管理技术的比较之下也就显得过于繁琐&#x…...

Fortran 微分方程求解 --ODEPACK

最近涉及到使用Fortran对微分方程求解&#xff0c;我们知道MATLAB已有内置的函数&#xff0c;比如ode家族&#xff0c;ode15s&#xff0c;对应着不同的求解办法。通过查看odepack的官方文档&#xff0c;我尝试使用了dlsode求解刚性和非刚性常微分方程组。 首先是github网址&am…...

生成xcframework

打包 XCFramework 的方法 XCFramework 是苹果推出的一种多平台二进制分发格式&#xff0c;可以包含多个架构和平台的代码。打包 XCFramework 通常用于分发库或框架。 使用 Xcode 命令行工具打包 通过 xcodebuild 命令可以打包 XCFramework。确保项目已经配置好需要支持的平台…...

大数据零基础学习day1之环境准备和大数据初步理解

学习大数据会使用到多台Linux服务器。 一、环境准备 1、VMware 基于VMware构建Linux虚拟机 是大数据从业者或者IT从业者的必备技能之一也是成本低廉的方案 所以VMware虚拟机方案是必须要学习的。 &#xff08;1&#xff09;设置网关 打开VMware虚拟机&#xff0c;点击编辑…...

【磁盘】每天掌握一个Linux命令 - iostat

目录 【磁盘】每天掌握一个Linux命令 - iostat工具概述安装方式核心功能基础用法进阶操作实战案例面试题场景生产场景 注意事项 【磁盘】每天掌握一个Linux命令 - iostat 工具概述 iostat&#xff08;I/O Statistics&#xff09;是Linux系统下用于监视系统输入输出设备和CPU使…...

GC1808高性能24位立体声音频ADC芯片解析

1. 芯片概述 GC1808是一款24位立体声音频模数转换器&#xff08;ADC&#xff09;&#xff0c;支持8kHz~96kHz采样率&#xff0c;集成Δ-Σ调制器、数字抗混叠滤波器和高通滤波器&#xff0c;适用于高保真音频采集场景。 2. 核心特性 高精度&#xff1a;24位分辨率&#xff0c…...

鸿蒙DevEco Studio HarmonyOS 5跑酷小游戏实现指南

1. 项目概述 本跑酷小游戏基于鸿蒙HarmonyOS 5开发&#xff0c;使用DevEco Studio作为开发工具&#xff0c;采用Java语言实现&#xff0c;包含角色控制、障碍物生成和分数计算系统。 2. 项目结构 /src/main/java/com/example/runner/├── MainAbilitySlice.java // 主界…...

2023赣州旅游投资集团

单选题 1.“不登高山&#xff0c;不知天之高也&#xff1b;不临深溪&#xff0c;不知地之厚也。”这句话说明_____。 A、人的意识具有创造性 B、人的认识是独立于实践之外的 C、实践在认识过程中具有决定作用 D、人的一切知识都是从直接经验中获得的 参考答案: C 本题解…...

三分算法与DeepSeek辅助证明是单峰函数

前置 单峰函数有唯一的最大值&#xff0c;最大值左侧的数值严格单调递增&#xff0c;最大值右侧的数值严格单调递减。 单谷函数有唯一的最小值&#xff0c;最小值左侧的数值严格单调递减&#xff0c;最小值右侧的数值严格单调递增。 三分的本质 三分和二分一样都是通过不断缩…...

windows系统MySQL安装文档

概览&#xff1a;本文讨论了MySQL的安装、使用过程中涉及的解压、配置、初始化、注册服务、启动、修改密码、登录、退出以及卸载等相关内容&#xff0c;为学习者提供全面的操作指导。关键要点包括&#xff1a; 解压 &#xff1a;下载完成后解压压缩包&#xff0c;得到MySQL 8.…...

CVPR2025重磅突破:AnomalyAny框架实现单样本生成逼真异常数据,破解视觉检测瓶颈!

本文介绍了一种名为AnomalyAny的创新框架&#xff0c;该方法利用Stable Diffusion的强大生成能力&#xff0c;仅需单个正常样本和文本描述&#xff0c;即可生成逼真且多样化的异常样本&#xff0c;有效解决了视觉异常检测中异常样本稀缺的难题&#xff0c;为工业质检、医疗影像…...

HTML版英语学习系统

HTML版英语学习系统 这是一个完全免费、无需安装、功能完整的英语学习工具&#xff0c;使用HTML CSS JavaScript实现。 功能 文本朗读练习 - 输入英文文章&#xff0c;系统朗读帮助练习听力和发音&#xff0c;适合跟读练习&#xff0c;模仿学习&#xff1b;实时词典查询 - 双…...