当前位置: 首页 > news >正文

动态不确定性的动态S过程(Matlab代码实现)

 💥💥💞💞欢迎来到本博客❤️❤️💥💥

🏆博主优势:🌞🌞🌞博客内容尽量做到思维缜密,逻辑清晰,为了方便读者。

⛳️座右铭:行百里者,半于九十。

📋📋📋本文目录如下:🎁🎁🎁

目录

💥1 概述

📚2 运行结果

🎉3 参考文献

🌈4 Matlab代码实现


💥1 概述

文献来源:

我们展示了如何为建模为线性分数表示并受各种类型的动态不确定性影响的不确定系统组成稳健的稳定性测试。我们的结果是根据线性矩阵不等式制定的,并基于最近建立的有限视界积分二次约束与终端成本的概念。这种约束的构造是由S过程在频域中使用动态拉格朗日乘法器的非常规应用所激发的。我们的技术贡献揭示了如何通过时域中的耗散率参数以无损方式执行这种构造。这为泛化到时变或混合系统开辟了道路。

原文摘要:

We show how to compose robust stability tests for uncertain systems modeled as linear fractional representations and affected by various types of dynamic uncertainties. Our results are formulated in terms of linear matrix inequalities and rest on the recently established notion of finite-horizon integral quadratic constraints with a terminal cost. The construction of such constraints is motivated by an unconventional application of the S-procedure in the frequency domain with dynamic Lagrange multipliers. Our technical contribution reveals how this construction can be performed by dissipativity arguments in the time-domain and in a lossless fashion. This opens the way for generalizations to time-varying or hybrid systems.

📚2 运行结果

部分代码:

% Involved functions
f1 = @(x) real([1; x(1) + 1i * x(2)]' * [0, 1; 1, -1] * ...
               [1; x(1) + 1i * x(2)]); % Outer circle
f2 = @(x) real([1; x(1) + 1i * x(2)]' * [0, -3/4; -3/4, 1] * ...
               [1; x(1) + 1i * x(2)]); % Inner circle

% Plotdomain
x = 0:0.01:2;
y = -1:0.01:1;

% Generate grid
[X,Y] = meshgrid(x,y);

% Evaluate functions on grid
Z1 = zeros(length(y), length(x));
Z2 = zeros(length(y), length(x));
for i = 1 : length(y)
    for j = 1 : length(x)
        Z1(i, j) = f1([x(j); y(i)]);
        Z2(i, j) = f2([x(j); y(i)]);
    end
end
contour(X,Y,Z1, [0;0], 'linewidth', 1.5, 'color', 'black')
contour(X,Y,Z2, [0;0], 'linewidth', 1.5, 'color', 'black')

xlabel('real part')
ylabel('imaginary part')
%set(gca, 'FontSize', 15)

print('../results/Fig2','-dpng')

%% Gain Bounds

% A very special system, but anyhow 
a = -0.1;
% (s + 2 - 1/(del+a)) * (s + del + 1)
sys = ss([(1-3*a)/a, (1-2*a)/a; 1, 0], ...
         [-1/a, 0, 1; 0, 0, 0], ...
         [a+3+(1-3*a)/a, 1+2*a + (1-2*a)/a; 1, 2; 1, 0], ...
         [-1/a, 1, 0; 0, 0, 1; 0, 0, 0]);
% This is constructed in a fashion such that lft(0.5, sys) is unstable

% IO dimensions
p.sys = sys;
p.inp = [2, 1];
p.out = [2, 1];


% Analysis based on covering with single disk. This has to fail since 0.5
% is contained in the disk.
Pi{1} = [0, 1; 1, -1];
ga    = ana_rep_intersect(p, Pi);


% More meaningful covering (intersection of interior of a disk and exterior
% of another disk).
Pi{1} = [0, 1; 1, -1];
Pi{2} = [0, -3/4; -3/4, 1];
ga    = ana_rep_intersect(p, Pi);
disp(['Gain bound from Theorem 8 with static filter : ', num2str(ga)]);

P  = [blkdiag(0, 0), blkdiag(1, -3/4); ...
      blkdiag(1, -3/4)', blkdiag(-1, 1)];
ga = ana_rep_region(p, P);
disp(['Gain bound from Theorem 10 with static filter : ', num2str(ga)]);


% Same as above, but with dynamic multipliers
nu   = 1;
al   = 2; 
p.ps = bas(nu, al, p.inp(1)); 
ga   = ana_rep_intersect(p, Pi);
disp(['Gain bound from Theorem 8 with dynamic filter (nu=1): ', ...
      num2str(ga)]);

🎉3 参考文献

文章中一些内容引自网络,会注明出处或引用为参考文献,难免有未尽之处,如有不妥,请随时联系删除。

[1]Tobias Holicki, Carsten W. Scherer (2022) A Dynamic S-Procedure for Dynamic Uncertainties 

🌈4 Matlab代码实现

相关文章:

动态不确定性的动态S过程(Matlab代码实现)

💥💥💞💞欢迎来到本博客❤️❤️💥💥 🏆博主优势:🌞🌞🌞博客内容尽量做到思维缜密,逻辑清晰,为了方便读者。 ⛳️座右铭&a…...

LoadRunner操作教程

日升时奋斗,日落时自省 目录 1、Virtual User Generator (VUG) 1.1、WebTours系统 1.1.1、WebTours启动 1.1.2、WebTours配置 1.2、脚本录制 1.3、编译 1.4、脚本运行 1.5、加强脚本 1.5.1、事务插入 1.5.2、插入集合点 1.5.3、参…...

.NET Core 实现日志打印输出在控制台应用程序中

在本文中,我们将探讨如何在 .NET Core 应用程序中将日志消息输出到控制台,从而更好地了解应用程序的运行状况。 .NET Core 实现日志打印输出在控制台应用程序中 在 .NET Core 中,日志输出打印是使用 Microsoft.Extensions.Logging 命名空间…...

Nginx正向代理与反向代理及Minio反向代理实操(三)

本文是对: Nginx安装及Minio集群反向动态代理配置(二) 文的进一步完善: 多台服务器间免密登录|免密拷贝 Cenos7 搭建Minio集群部署服务器(一) Cenos7 搭建Minio集群Nginx统一访问入口|反向动态代理(二) Spring Boot 与Minio整合实现文件上传与下载(三) CentOS7的journa…...

Xmake v2.8.2 发布,官方包仓库数量突破 1k

Xmake 是一个基于 Lua 的轻量级跨平台构建工具。 它非常的轻量,没有任何依赖,因为它内置了 Lua 运行时。 它使用 xmake.lua 维护项目构建,相比 makefile/CMakeLists.txt,配置语法更加简洁直观,对新手非常友好&#x…...

加油站抽烟烟火智能识别算法

加油站抽烟烟火智能识别系统通过yoloopencv网络模型图像识别分析技术,加油站抽烟烟火智能识别算法识别出抽烟和燃放烟火的情况,并发出预警信号以提醒相关人员,减少火灾风险。OpenCV基于C实现,同时提供python, Ruby, Matlab等语言的…...

web前端开发中的响应式布局设计是什么意思?

响应式布局是指网页设计和开发中的一种技术方法,旨在使网页能够在不同大小的屏幕和设备上都能良好地显示和交互。这种方法使得网页可以自动适应不同的屏幕尺寸,包括桌面电脑、平板电脑和手机等。 在Web前端开发中,响应式布局通常使用CSS&…...

【LeetCode-面试经典150题-day14】

目录 19.删除链表的倒数第N个结点 82.删除排序链表中的重复元素Ⅱ 61. 旋转链表 86.分隔链表 146.LRU缓存 19.删除链表的倒数第N个结点 题意: 给你一个链表,删除链表的倒数第 n 个结点,并且返回链表的头结点。 【输入样例】head [1,2,3,4,5…...

【算法系列总结之分组循环篇】

【算法系列总结之分组循环篇】 分组循环1446.连续字符1869.哪种连续子字符串更长1957.删除字符使字符串变好2038.如果相邻两个颜色均相同则删除当前颜色1759.统计同质子字符串的数目2110.股票平滑下跌阶段的数目1578.使绳子变成彩色的最短时间1839.所有元音按顺序排布的最长子字…...

汽车摩托车零部件出口管理ERP解决方案

近年来,随着全球经济的发展,人们对交通工具的需求增加,国内汽车、摩托车市场的不断扩大,以及国内制造技术的不断提高,中国汽车、摩托车零部件出口业务迎来了广阔的发展前景,带动了汽车配件和摩托车配件市场…...

NPM 管理组织包

目录 1、关于组织范围和包 1.1 管理无作用域的包 2、使用组织设置配置npm客户端 2.1 配置您的npm客户端以使用您组织的范围 为所有新包设置组织范围 为单个包设置组织范围 2.2 将默认包可见性更改为public 将单个包的包可见性设置为public 将所有包的包可见性设置为pu…...

蓝桥杯上岸每日N题 (修剪灌木)

大家好 我是寸铁 希望这篇题解对你有用,麻烦动动手指点个赞或关注,感谢您的关注 不清楚蓝桥杯考什么的点点下方👇 考点秘籍 想背纯享模版的伙伴们点点下方👇 蓝桥杯省一你一定不能错过的模板大全(第一期) 蓝桥杯省一你一定不…...

docker harbor私有库

目录 一.Harbor介绍 二.Harbor的特性 三.Harbor的构成 四.Harbor构建Docker私有仓库 4.2在Server主机上部署Harbor服务(192.168.158.25) 4.2.1 这时候这边就可以去查看192.168.158.25网页 4.3此时可真机访问serverIP 4.4通过127.0.0.1来登陆和推送镜…...

strcmp 的使用和模拟

目录 函数介绍: 头文件: 语法: 代码演示: 函数模拟: 函数介绍: strcmp是比较大小的函数。从字符串开始进行比较,如果两个相同位置的字符相同,那么继续往下进行比较,…...

军用加固计算机

军用加固计算机是为满足军事应用需求而设计的一种高性能、高安全性的计算机。与普通计算机相比,它具有以下特点: 加固材料:军用加固计算机通常采用钢板、铝合金等材料进行加固,能够承受较大的冲击和振动,保证在恶劣环境…...

block层:5. 请求分配

请求相关 源码基于5.10 1. 分配请求 static struct request *__blk_mq_alloc_request(struct blk_mq_alloc_data *data) {// 请求队列struct request_queue *q data->q;// 电梯struct elevator_queue *e q->elevator;u64 alloc_time_ns 0;unsigned int tag;// 判断…...

L1-038 新世界(Python实现) 测试点全过

题目 这道超级简单的题目没有任何输入。 你只需要在第一行中输出程序员钦定名言“Hello World”,并且在第二行中输出更新版的“Hello New World”就可以了。 输入样例: 无输出样例: Hello World Hello New World题解 """…...

【hello git】初识Git

目录 一、简述Git 二、Linux 下 Git 的安装:CentOS 2.1 基本命令 2.2 示例: 三、Linux 下 Git 的安装:ubuntu 3.1 基本命令 3.2 示例: 一、简述Git Git :版本控制器,记录每次的修改以及版本迭代的一个管…...

Vueelementui动态渲染Radio,Checkbox,笔记

<div id"app"><el-card style"width: 300px"><el-form label-position"top" size"mini"><el-form-item label"标题"><el-input></el-input></el-form-item><el-form-item v-f…...

SpringDataRedis 使用

1. SpringDataRedis 特点2. 使用 SpringDataRedis 步骤3. 自定义 RedisTemplate 序列化4. SpringDataRedis 操作对象 1. SpringDataRedis 特点 提供了对不同 Redis 客户端的整合&#xff08;Lettuce 和 Jedis&#xff09;提供了 RedisTemplate 统一 API 来操作 Redis支持 Redi…...

工业安全零事故的智能守护者:一体化AI智能安防平台

前言&#xff1a; 通过AI视觉技术&#xff0c;为船厂提供全面的安全监控解决方案&#xff0c;涵盖交通违规检测、起重机轨道安全、非法入侵检测、盗窃防范、安全规范执行监控等多个方面&#xff0c;能够实现对应负责人反馈机制&#xff0c;并最终实现数据的统计报表。提升船厂…...

中南大学无人机智能体的全面评估!BEDI:用于评估无人机上具身智能体的综合性基准测试

作者&#xff1a;Mingning Guo, Mengwei Wu, Jiarun He, Shaoxian Li, Haifeng Li, Chao Tao单位&#xff1a;中南大学地球科学与信息物理学院论文标题&#xff1a;BEDI: A Comprehensive Benchmark for Evaluating Embodied Agents on UAVs论文链接&#xff1a;https://arxiv.…...

Linux相关概念和易错知识点(42)(TCP的连接管理、可靠性、面临复杂网络的处理)

目录 1.TCP的连接管理机制&#xff08;1&#xff09;三次握手①握手过程②对握手过程的理解 &#xff08;2&#xff09;四次挥手&#xff08;3&#xff09;握手和挥手的触发&#xff08;4&#xff09;状态切换①挥手过程中状态的切换②握手过程中状态的切换 2.TCP的可靠性&…...

dedecms 织梦自定义表单留言增加ajax验证码功能

增加ajax功能模块&#xff0c;用户不点击提交按钮&#xff0c;只要输入框失去焦点&#xff0c;就会提前提示验证码是否正确。 一&#xff0c;模板上增加验证码 <input name"vdcode"id"vdcode" placeholder"请输入验证码" type"text&quo…...

如何将联系人从 iPhone 转移到 Android

从 iPhone 换到 Android 手机时&#xff0c;你可能需要保留重要的数据&#xff0c;例如通讯录。好在&#xff0c;将通讯录从 iPhone 转移到 Android 手机非常简单&#xff0c;你可以从本文中学习 6 种可靠的方法&#xff0c;确保随时保持连接&#xff0c;不错过任何信息。 第 1…...

C++.OpenGL (10/64)基础光照(Basic Lighting)

基础光照(Basic Lighting) 冯氏光照模型(Phong Lighting Model) #mermaid-svg-GLdskXwWINxNGHso {font-family:"trebuchet ms",verdana,arial,sans-serif;font-size:16px;fill:#333;}#mermaid-svg-GLdskXwWINxNGHso .error-icon{fill:#552222;}#mermaid-svg-GLd…...

HTML前端开发:JavaScript 常用事件详解

作为前端开发的核心&#xff0c;JavaScript 事件是用户与网页交互的基础。以下是常见事件的详细说明和用法示例&#xff1a; 1. onclick - 点击事件 当元素被单击时触发&#xff08;左键点击&#xff09; button.onclick function() {alert("按钮被点击了&#xff01;&…...

根据万维钢·精英日课6的内容,使用AI(2025)可以参考以下方法:

根据万维钢精英日课6的内容&#xff0c;使用AI&#xff08;2025&#xff09;可以参考以下方法&#xff1a; 四个洞见 模型已经比人聪明&#xff1a;以ChatGPT o3为代表的AI非常强大&#xff0c;能运用高级理论解释道理、引用最新学术论文&#xff0c;生成对顶尖科学家都有用的…...

以光量子为例,详解量子获取方式

光量子技术获取量子比特可在室温下进行。该方式有望通过与名为硅光子学&#xff08;silicon photonics&#xff09;的光波导&#xff08;optical waveguide&#xff09;芯片制造技术和光纤等光通信技术相结合来实现量子计算机。量子力学中&#xff0c;光既是波又是粒子。光子本…...

高效线程安全的单例模式:Python 中的懒加载与自定义初始化参数

高效线程安全的单例模式:Python 中的懒加载与自定义初始化参数 在软件开发中,单例模式(Singleton Pattern)是一种常见的设计模式,确保一个类仅有一个实例,并提供一个全局访问点。在多线程环境下,实现单例模式时需要注意线程安全问题,以防止多个线程同时创建实例,导致…...