当前位置: 首页 > news >正文

动态不确定性的动态S过程(Matlab代码实现)

 💥💥💞💞欢迎来到本博客❤️❤️💥💥

🏆博主优势:🌞🌞🌞博客内容尽量做到思维缜密,逻辑清晰,为了方便读者。

⛳️座右铭:行百里者,半于九十。

📋📋📋本文目录如下:🎁🎁🎁

目录

💥1 概述

📚2 运行结果

🎉3 参考文献

🌈4 Matlab代码实现


💥1 概述

文献来源:

我们展示了如何为建模为线性分数表示并受各种类型的动态不确定性影响的不确定系统组成稳健的稳定性测试。我们的结果是根据线性矩阵不等式制定的,并基于最近建立的有限视界积分二次约束与终端成本的概念。这种约束的构造是由S过程在频域中使用动态拉格朗日乘法器的非常规应用所激发的。我们的技术贡献揭示了如何通过时域中的耗散率参数以无损方式执行这种构造。这为泛化到时变或混合系统开辟了道路。

原文摘要:

We show how to compose robust stability tests for uncertain systems modeled as linear fractional representations and affected by various types of dynamic uncertainties. Our results are formulated in terms of linear matrix inequalities and rest on the recently established notion of finite-horizon integral quadratic constraints with a terminal cost. The construction of such constraints is motivated by an unconventional application of the S-procedure in the frequency domain with dynamic Lagrange multipliers. Our technical contribution reveals how this construction can be performed by dissipativity arguments in the time-domain and in a lossless fashion. This opens the way for generalizations to time-varying or hybrid systems.

📚2 运行结果

部分代码:

% Involved functions
f1 = @(x) real([1; x(1) + 1i * x(2)]' * [0, 1; 1, -1] * ...
               [1; x(1) + 1i * x(2)]); % Outer circle
f2 = @(x) real([1; x(1) + 1i * x(2)]' * [0, -3/4; -3/4, 1] * ...
               [1; x(1) + 1i * x(2)]); % Inner circle

% Plotdomain
x = 0:0.01:2;
y = -1:0.01:1;

% Generate grid
[X,Y] = meshgrid(x,y);

% Evaluate functions on grid
Z1 = zeros(length(y), length(x));
Z2 = zeros(length(y), length(x));
for i = 1 : length(y)
    for j = 1 : length(x)
        Z1(i, j) = f1([x(j); y(i)]);
        Z2(i, j) = f2([x(j); y(i)]);
    end
end
contour(X,Y,Z1, [0;0], 'linewidth', 1.5, 'color', 'black')
contour(X,Y,Z2, [0;0], 'linewidth', 1.5, 'color', 'black')

xlabel('real part')
ylabel('imaginary part')
%set(gca, 'FontSize', 15)

print('../results/Fig2','-dpng')

%% Gain Bounds

% A very special system, but anyhow 
a = -0.1;
% (s + 2 - 1/(del+a)) * (s + del + 1)
sys = ss([(1-3*a)/a, (1-2*a)/a; 1, 0], ...
         [-1/a, 0, 1; 0, 0, 0], ...
         [a+3+(1-3*a)/a, 1+2*a + (1-2*a)/a; 1, 2; 1, 0], ...
         [-1/a, 1, 0; 0, 0, 1; 0, 0, 0]);
% This is constructed in a fashion such that lft(0.5, sys) is unstable

% IO dimensions
p.sys = sys;
p.inp = [2, 1];
p.out = [2, 1];


% Analysis based on covering with single disk. This has to fail since 0.5
% is contained in the disk.
Pi{1} = [0, 1; 1, -1];
ga    = ana_rep_intersect(p, Pi);


% More meaningful covering (intersection of interior of a disk and exterior
% of another disk).
Pi{1} = [0, 1; 1, -1];
Pi{2} = [0, -3/4; -3/4, 1];
ga    = ana_rep_intersect(p, Pi);
disp(['Gain bound from Theorem 8 with static filter : ', num2str(ga)]);

P  = [blkdiag(0, 0), blkdiag(1, -3/4); ...
      blkdiag(1, -3/4)', blkdiag(-1, 1)];
ga = ana_rep_region(p, P);
disp(['Gain bound from Theorem 10 with static filter : ', num2str(ga)]);


% Same as above, but with dynamic multipliers
nu   = 1;
al   = 2; 
p.ps = bas(nu, al, p.inp(1)); 
ga   = ana_rep_intersect(p, Pi);
disp(['Gain bound from Theorem 8 with dynamic filter (nu=1): ', ...
      num2str(ga)]);

🎉3 参考文献

文章中一些内容引自网络,会注明出处或引用为参考文献,难免有未尽之处,如有不妥,请随时联系删除。

[1]Tobias Holicki, Carsten W. Scherer (2022) A Dynamic S-Procedure for Dynamic Uncertainties 

🌈4 Matlab代码实现

相关文章:

动态不确定性的动态S过程(Matlab代码实现)

💥💥💞💞欢迎来到本博客❤️❤️💥💥 🏆博主优势:🌞🌞🌞博客内容尽量做到思维缜密,逻辑清晰,为了方便读者。 ⛳️座右铭&a…...

LoadRunner操作教程

日升时奋斗,日落时自省 目录 1、Virtual User Generator (VUG) 1.1、WebTours系统 1.1.1、WebTours启动 1.1.2、WebTours配置 1.2、脚本录制 1.3、编译 1.4、脚本运行 1.5、加强脚本 1.5.1、事务插入 1.5.2、插入集合点 1.5.3、参…...

.NET Core 实现日志打印输出在控制台应用程序中

在本文中,我们将探讨如何在 .NET Core 应用程序中将日志消息输出到控制台,从而更好地了解应用程序的运行状况。 .NET Core 实现日志打印输出在控制台应用程序中 在 .NET Core 中,日志输出打印是使用 Microsoft.Extensions.Logging 命名空间…...

Nginx正向代理与反向代理及Minio反向代理实操(三)

本文是对: Nginx安装及Minio集群反向动态代理配置(二) 文的进一步完善: 多台服务器间免密登录|免密拷贝 Cenos7 搭建Minio集群部署服务器(一) Cenos7 搭建Minio集群Nginx统一访问入口|反向动态代理(二) Spring Boot 与Minio整合实现文件上传与下载(三) CentOS7的journa…...

Xmake v2.8.2 发布,官方包仓库数量突破 1k

Xmake 是一个基于 Lua 的轻量级跨平台构建工具。 它非常的轻量,没有任何依赖,因为它内置了 Lua 运行时。 它使用 xmake.lua 维护项目构建,相比 makefile/CMakeLists.txt,配置语法更加简洁直观,对新手非常友好&#x…...

加油站抽烟烟火智能识别算法

加油站抽烟烟火智能识别系统通过yoloopencv网络模型图像识别分析技术,加油站抽烟烟火智能识别算法识别出抽烟和燃放烟火的情况,并发出预警信号以提醒相关人员,减少火灾风险。OpenCV基于C实现,同时提供python, Ruby, Matlab等语言的…...

web前端开发中的响应式布局设计是什么意思?

响应式布局是指网页设计和开发中的一种技术方法,旨在使网页能够在不同大小的屏幕和设备上都能良好地显示和交互。这种方法使得网页可以自动适应不同的屏幕尺寸,包括桌面电脑、平板电脑和手机等。 在Web前端开发中,响应式布局通常使用CSS&…...

【LeetCode-面试经典150题-day14】

目录 19.删除链表的倒数第N个结点 82.删除排序链表中的重复元素Ⅱ 61. 旋转链表 86.分隔链表 146.LRU缓存 19.删除链表的倒数第N个结点 题意: 给你一个链表,删除链表的倒数第 n 个结点,并且返回链表的头结点。 【输入样例】head [1,2,3,4,5…...

【算法系列总结之分组循环篇】

【算法系列总结之分组循环篇】 分组循环1446.连续字符1869.哪种连续子字符串更长1957.删除字符使字符串变好2038.如果相邻两个颜色均相同则删除当前颜色1759.统计同质子字符串的数目2110.股票平滑下跌阶段的数目1578.使绳子变成彩色的最短时间1839.所有元音按顺序排布的最长子字…...

汽车摩托车零部件出口管理ERP解决方案

近年来,随着全球经济的发展,人们对交通工具的需求增加,国内汽车、摩托车市场的不断扩大,以及国内制造技术的不断提高,中国汽车、摩托车零部件出口业务迎来了广阔的发展前景,带动了汽车配件和摩托车配件市场…...

NPM 管理组织包

目录 1、关于组织范围和包 1.1 管理无作用域的包 2、使用组织设置配置npm客户端 2.1 配置您的npm客户端以使用您组织的范围 为所有新包设置组织范围 为单个包设置组织范围 2.2 将默认包可见性更改为public 将单个包的包可见性设置为public 将所有包的包可见性设置为pu…...

蓝桥杯上岸每日N题 (修剪灌木)

大家好 我是寸铁 希望这篇题解对你有用,麻烦动动手指点个赞或关注,感谢您的关注 不清楚蓝桥杯考什么的点点下方👇 考点秘籍 想背纯享模版的伙伴们点点下方👇 蓝桥杯省一你一定不能错过的模板大全(第一期) 蓝桥杯省一你一定不…...

docker harbor私有库

目录 一.Harbor介绍 二.Harbor的特性 三.Harbor的构成 四.Harbor构建Docker私有仓库 4.2在Server主机上部署Harbor服务(192.168.158.25) 4.2.1 这时候这边就可以去查看192.168.158.25网页 4.3此时可真机访问serverIP 4.4通过127.0.0.1来登陆和推送镜…...

strcmp 的使用和模拟

目录 函数介绍: 头文件: 语法: 代码演示: 函数模拟: 函数介绍: strcmp是比较大小的函数。从字符串开始进行比较,如果两个相同位置的字符相同,那么继续往下进行比较,…...

军用加固计算机

军用加固计算机是为满足军事应用需求而设计的一种高性能、高安全性的计算机。与普通计算机相比,它具有以下特点: 加固材料:军用加固计算机通常采用钢板、铝合金等材料进行加固,能够承受较大的冲击和振动,保证在恶劣环境…...

block层:5. 请求分配

请求相关 源码基于5.10 1. 分配请求 static struct request *__blk_mq_alloc_request(struct blk_mq_alloc_data *data) {// 请求队列struct request_queue *q data->q;// 电梯struct elevator_queue *e q->elevator;u64 alloc_time_ns 0;unsigned int tag;// 判断…...

L1-038 新世界(Python实现) 测试点全过

题目 这道超级简单的题目没有任何输入。 你只需要在第一行中输出程序员钦定名言“Hello World”,并且在第二行中输出更新版的“Hello New World”就可以了。 输入样例: 无输出样例: Hello World Hello New World题解 """…...

【hello git】初识Git

目录 一、简述Git 二、Linux 下 Git 的安装:CentOS 2.1 基本命令 2.2 示例: 三、Linux 下 Git 的安装:ubuntu 3.1 基本命令 3.2 示例: 一、简述Git Git :版本控制器,记录每次的修改以及版本迭代的一个管…...

Vueelementui动态渲染Radio,Checkbox,笔记

<div id"app"><el-card style"width: 300px"><el-form label-position"top" size"mini"><el-form-item label"标题"><el-input></el-input></el-form-item><el-form-item v-f…...

SpringDataRedis 使用

1. SpringDataRedis 特点2. 使用 SpringDataRedis 步骤3. 自定义 RedisTemplate 序列化4. SpringDataRedis 操作对象 1. SpringDataRedis 特点 提供了对不同 Redis 客户端的整合&#xff08;Lettuce 和 Jedis&#xff09;提供了 RedisTemplate 统一 API 来操作 Redis支持 Redi…...

Cesium1.95中高性能加载1500个点

一、基本方式&#xff1a; 图标使用.png比.svg性能要好 <template><div id"cesiumContainer"></div><div class"toolbar"><button id"resetButton">重新生成点</button><span id"countDisplay&qu…...

Objective-C常用命名规范总结

【OC】常用命名规范总结 文章目录 【OC】常用命名规范总结1.类名&#xff08;Class Name)2.协议名&#xff08;Protocol Name)3.方法名&#xff08;Method Name)4.属性名&#xff08;Property Name&#xff09;5.局部变量/实例变量&#xff08;Local / Instance Variables&…...

基础测试工具使用经验

背景 vtune&#xff0c;perf, nsight system等基础测试工具&#xff0c;都是用过的&#xff0c;但是没有记录&#xff0c;都逐渐忘了。所以写这篇博客总结记录一下&#xff0c;只要以后发现新的用法&#xff0c;就记得来编辑补充一下 perf 比较基础的用法&#xff1a; 先改这…...

【ROS】Nav2源码之nav2_behavior_tree-行为树节点列表

1、行为树节点分类 在 Nav2(Navigation2)的行为树框架中,行为树节点插件按照功能分为 Action(动作节点)、Condition(条件节点)、Control(控制节点) 和 Decorator(装饰节点) 四类。 1.1 动作节点 Action 执行具体的机器人操作或任务,直接与硬件、传感器或外部系统…...

生成 Git SSH 证书

&#x1f511; 1. ​​生成 SSH 密钥对​​ 在终端&#xff08;Windows 使用 Git Bash&#xff0c;Mac/Linux 使用 Terminal&#xff09;执行命令&#xff1a; ssh-keygen -t rsa -b 4096 -C "your_emailexample.com" ​​参数说明​​&#xff1a; -t rsa&#x…...

苍穹外卖--缓存菜品

1.问题说明 用户端小程序展示的菜品数据都是通过查询数据库获得&#xff0c;如果用户端访问量比较大&#xff0c;数据库访问压力随之增大 2.实现思路 通过Redis来缓存菜品数据&#xff0c;减少数据库查询操作。 缓存逻辑分析&#xff1a; ①每个分类下的菜品保持一份缓存数据…...

Spring AI与Spring Modulith核心技术解析

Spring AI核心架构解析 Spring AI&#xff08;https://spring.io/projects/spring-ai&#xff09;作为Spring生态中的AI集成框架&#xff0c;其核心设计理念是通过模块化架构降低AI应用的开发复杂度。与Python生态中的LangChain/LlamaIndex等工具类似&#xff0c;但特别为多语…...

【Oracle】分区表

个人主页&#xff1a;Guiat 归属专栏&#xff1a;Oracle 文章目录 1. 分区表基础概述1.1 分区表的概念与优势1.2 分区类型概览1.3 分区表的工作原理 2. 范围分区 (RANGE Partitioning)2.1 基础范围分区2.1.1 按日期范围分区2.1.2 按数值范围分区 2.2 间隔分区 (INTERVAL Partit…...

使用Matplotlib创建炫酷的3D散点图:数据可视化的新维度

文章目录 基础实现代码代码解析进阶技巧1. 自定义点的大小和颜色2. 添加图例和样式美化3. 真实数据应用示例实用技巧与注意事项完整示例(带样式)应用场景在数据科学和可视化领域,三维图形能为我们提供更丰富的数据洞察。本文将手把手教你如何使用Python的Matplotlib库创建引…...

安宝特案例丨Vuzix AR智能眼镜集成专业软件,助力卢森堡医院药房转型,赢得辉瑞创新奖

在Vuzix M400 AR智能眼镜的助力下&#xff0c;卢森堡罗伯特舒曼医院&#xff08;the Robert Schuman Hospitals, HRS&#xff09;凭借在无菌制剂生产流程中引入增强现实技术&#xff08;AR&#xff09;创新项目&#xff0c;荣获了2024年6月7日由卢森堡医院药剂师协会&#xff0…...