13.4 目标检测锚框标注 非极大值抑制
锚框的形状计算公式
假设原图的高为H,宽为W
锚框形状详细公式推导
以每个像素为中心生成不同形状的锚框
# s是缩放比,ratio是宽高比
def multibox_prior(data, sizes, ratios):"""生成以每个像素为中心具有不同形状的锚框"""in_height,in_width = data.shape[-2:] # 取出最后两个元素,即h和wdevice,num_sizes,num_ratios = data.device,len(sizes),len(ratios)boxes_per_pixel = (num_sizes+num_ratios -1) # 以某个像素坐标为中心的锚框为n+m-1size_tensor = torch.tensor(sizes,device=device) # 将缩放比例列表sizes转为tensor, device参数指定设备ratio_tensor = torch.tensor(ratios,device=device)# 为了将锚点移动到像素的中心,需要设置偏移量。# 因为一个像素的高为1且宽为1,我们选择偏移我们的中心0.5offset_h, offset_w = 0.5, 0.5steps_h = 1.0 / in_height # 在y轴上缩放步⻓steps_w = 1.0 / in_width # 在x轴上缩放步⻓print(f'steps_h,steps_w = {steps_h,steps_w}')# 生成锚框的所有中心点center_h = (torch.arange(in_height, device=device) + offset_h) * steps_hcenter_w = (torch.arange(in_width, device=device) + offset_w) * steps_wprint(f'center_h,center_w={center_h,center_w}')#网格化中心点坐标shift_y,shift_x = torch.meshgrid(center_h,center_w)#reshape成一维,shift_y和shift_x坐标一一对应shift_y,shift_x = shift_y.reshape(-1),shift_x.reshape(-1)print(f'shift_y, shift_x={shift_y, shift_x}') ##norm=√(H/W),这个就是个标号,方便计算norm = torch.sqrt(torch.tensor(in_height)/torch.tensor(in_width))# 生成“boxes_per_pixel”个高和宽,#只考虑包含s1或r1的组合,因此S*r1 与s1*R合并即为n+m-1个锚框w = torch.cat((size_tensor * torch.sqrt(ratio_tensor[0]),size_tensor[0] * torch.sqrt(ratio_tensor[1:]))) * normh = torch.cat((size_tensor / torch.sqrt(ratio_tensor[0]),size_tensor[0] / torch.sqrt(ratio_tensor[1:]))) / norm# 获得归一化后的锚框的w,h的一半,形成偏移量,为了让归一化后的锚框根据中心点 + 偏移量找到 左上角和右下角坐标anchor_manipulations = torch.stack((-w, -h, w, h)).T.repeat(in_height * in_width, 1) / 2# 每个中心点都将有“boxes_per_pixel”个锚框,# 所以生成含所有锚框中心的网格,重复了“boxes_per_pixel”次out_grid = torch.stack([shift_x, shift_y, shift_x, shift_y],dim=1).repeat_interleave(boxes_per_pixel, dim=0)# 每个中心点都将有“boxes_per_pixel”个锚框,# 所以生成含所有锚框中心的网格,重复了“boxes_per_pixel”次out_grid = torch.stack([shift_x, shift_y, shift_x, shift_y],dim=1).repeat_interleave(boxes_per_pixel, dim=0)#(x_min,y_min,x_max,y_max) = 归一化后的锚框中心点 + 往左上角和右下角走的偏移量output = out_grid + anchor_manipulationsreturn output.unsqueeze(0)
# 将锚框变量Y的形状更改为(图像高度,图像宽度,以同一像素为中心的锚框的数量,4)
boxes = Y.reshape(h, w, 5, 4)# 此处的5由 缩放的数量n + 宽高比的数量m -1 而得
# 访问以(250,250)为中心的第一个锚框。它有四个元素:锚框左上⻆的(x, y)轴坐标和右下⻆的(x, y)轴坐标
boxes[250, 250, 0, :] # 输出的坐标是归一化后的,即归一化前的锚框 w/in_weight 和 h/in_height
img = d2l.plt.imread('../data/images/cat_and_dog.jpg')
h, w = img.shape[:2]
print(h, w)
X = torch.rand(size=(1, 3, h, w))
# 返回的锚框变量Y的形状是(批量大小,锚框的数量,4 (表示锚框的左上角右下角坐标))。
Y = multibox_prior(X, sizes=[0.75, 0.5, 0.25], ratios=[1, 2, 0.5])
Y.shape
根据真实框来标注生成的锚框
# 计算IOU
def box_iou(boxes1,boxes2):''':param boxes1: shape = (boxes1的数量,4):param boxes2: shape = (boxes2的数量,4):param areas1: boxes1中每个框的面积 ,shape = (boxes1的数量):param areas2: boxes2中每个框的面积 ,shape = (boxes2的数量):return:'''# 定义一个Lambda函数,输入boxes,内容是计算得到框的面积box_area = lambda boxes:((boxes[:,2] - boxes[:,0]) * (boxes[:,3] - boxes[:,0]))# 计算面积areas1 = box_area(boxes1)areas2 = box_area(boxes2)# 计算交集 要把所有锚框的左上角坐标 与 真实框的所有左上角坐标 作比较,大的就是交集的左上角 ,加个None 可以让锚框与所有真实框作对比inter_upperlefts = torch.max(boxes1[:,None,:2],boxes2[:,:2])# 把所有锚框的右下角坐标 与 真实框的所有右下角坐标 作比较,小的就是交集的右下角坐标 ,加个None 可以让锚框与所有真实框作对比inter_lowerrights = torch.min(boxes1[:,None,2:],boxes2[:,2:])# 如果右下角-左上角有元素小于0,那就说明没有交集,clamp(min-0)会将每个元素与0比较,小于0的元素将会被替换成0inters = (inter_lowerrights - inter_upperlefts).clamp(min=0) # 得到w和hinter_areas = inters[:,:,0] * inters[:,:,1] # 每个样本的 w*h# 求锚框与真实框的并集# 将所有锚框与真实框相加,他们会多出来一个交集的面积,所以要减一个交集的面积union_areas = areas1[:,None] * areas2 - inter_areasreturn inter_areas/union_areas
# 每个真实框都要跟所有锚框计算iou,Iou数量等于,真实框数量 * 锚框的数量
def assign_anchor_to_bbox(ground_truth,anchors,devices,iou_threshold=0.5):# 得到锚框和真实框的个数num_anchors,num_gt_boxes = anchors.shape[0],ground_truth.shape[0]# jaccard是计算 所有锚框anchors和真实框ground_truth的交并比jaccard = box_iou(anchors,ground_truth)# torch.full(size,fill_value,dtype,device),如下代码生产成一个一位数组,长度为锚框的个数,值为-1anchors_bbox_map = torch.full((num_anchors,),-1,dtype=torch.long,device=devices)# 对行取最大值,得到每个真实框对应的最大IOU的锚框max_ious,indices = torch.max(jaccard,dim=1)# 返回张量中非0元素的索引,即Max_iou>设定的阈值,位于第i行和第j列的元素x_ij是锚框i和真实边界框j的IoUanc_i = torch.nonzero(max_ious>=iou_threshold).reshape(-1)box_j = indices[max_ious>=iou_threshold]anchors_bbox_map[anc_i] = box_jcol_discard = torch.full((num_anchors,), -1)row_discard = torch.full((num_gt_boxes,), -1)for _ in range(num_gt_boxes):max_idx = torch.argmax(jaccard)box_idx = (max_idx % num_gt_boxes).long()anc_idx = (max_idx / num_gt_boxes).long()anchors_bbox_map[anc_idx] = box_idxjaccard[:, box_idx] = col_discardjaccard[anc_idx, :] = row_discardreturn anchors_bbox_map
# 标注类别和偏移量
def offset_boxes(anchors, assigned_bb, eps=1e-6):"""对锚框偏移量的转换"""c_anc = d2l.box_corner_to_center(anchors)c_assigned_bb = d2l.box_corner_to_center(assigned_bb)offset_xy = 10 * (c_assigned_bb[:, :2] - c_anc[:, :2]) / c_anc[:, 2:]offset_wh = 5 * torch.log(eps + c_assigned_bb[:, 2:] / c_anc[:, 2:])offset = torch.cat([offset_xy, offset_wh], axis=1)return offset
'''如果一个锚框没有被分配真实边界框,将锚框的类别标记为背景。背景类别的锚框通常被称为负类锚框,其余的被称为正类锚框。我们使用真实边界框(labels参数)实现以下multibox_target函数,来标记锚框的类别和偏移量(anchors参数)。此函数将背景类别的索引设置为零,然后将新类别的整数索引递增一。
'''
def multibox_target(anchors, labels):"""使用真实边界框标记锚框"""batch_size, anchors = labels.shape[0], anchors.squeeze(0)batch_offset, batch_mask, batch_class_labels = [], [], []device, num_anchors = anchors.device, anchors.shape[0]for i in range(batch_size):label = labels[i, :, :]anchors_bbox_map = assign_anchor_to_bbox(label[:, 1:], anchors, device)bbox_mask = ((anchors_bbox_map >= 0).float().unsqueeze(-1)).repeat(1, 4)# 将类标签和分配的边界框坐标初始化为零class_labels = torch.zeros(num_anchors, dtype=torch.long,device=device)assigned_bb = torch.zeros((num_anchors, 4), dtype=torch.float32,device=device)# 使用真实边界框来标记锚框的类别。# 如果一个锚框没有被分配,标记其为背景(值为零)indices_true = torch.nonzero(anchors_bbox_map >= 0)bb_idx = anchors_bbox_map[indices_true]class_labels[indices_true] = label[bb_idx, 0].long() + 1assigned_bb[indices_true] = label[bb_idx, 1:]# 使用真实边界框来标记锚框的类别。# 如果一个锚框没有被分配,标记其为背景(值为零)indices_true = torch.nonzero(anchors_bbox_map >= 0)bb_idx = anchors_bbox_map[indices_true]class_labels[indices_true] = label[bb_idx, 0].long() + 1assigned_bb[indices_true] = label[bb_idx, 1:]# 偏移量转换offset = offset_boxes(anchors, assigned_bb) * bbox_maskbatch_offset.append(offset.reshape(-1))batch_mask.append(bbox_mask.reshape(-1))batch_class_labels.append(class_labels)bbox_offset = torch.stack(batch_offset)bbox_mask = torch.stack(batch_mask)class_labels = torch.stack(batch_class_labels)return (bbox_offset, bbox_mask, class_labels)
# 第一个元素表示类别,0代表狗,1代表猫。其余四个元素是左下角坐标和右上角坐标(归一化后的介于0-1之间),归一化的方法是,x坐标 / 宽,y坐标/高
ground_truth = torch.tensor([[0, 0.1, 0.08, 0.52, 0.92],[1, 0.55, 0.2, 0.9, 0.88]])
# 锚框
anchors = torch.tensor([[0, 0.1, 0.2, 0.3], [0.15, 0.2, 0.4, 0.4],[0.63, 0.05, 0.88, 0.98], [0.66, 0.45, 0.8, 0.8],[0.57, 0.3, 0.92, 0.9]])
bbox_scale = torch.tensor((w, h, w, h))
# img = d2l.plt.imread('../data/images/cat_dog.png')
img = d2l.plt.imread('../data/images/cat_and_dog.jpg')
fig = d2l.plt.imshow(img)
# 画出真实框 :(坐标轴,归一化*bbox_scale得到原图规模的坐标,标签,颜色)
show_bboxes(fig.axes,ground_truth[:,1:] * bbox_scale,['dog','cat'],'k') # k最后画出来是黑色
# 画出设置的锚框,把锚框类别标记为0-4
show_bboxes(fig.axes, anchors * bbox_scale, ['0', '1', '2', '3', '4']);
'''labels[0]:labels[1]:掩码,形状为(批量大小,锚框数的4倍),对应每个锚框的4个偏移量(负类掩码为0),通过元素乘法,将负类的偏移量过滤掉labels[2]:锚框对应的标签
'''
labels = multibox_target(anchors.unsqueeze(dim=0),ground_truth.unsqueeze(dim=0))
非极大值抑制
'''在预测时,我们先为图像生成多个锚框,再为这些锚框一一预测类别和偏移量。一个预测好的边界框则根据其中某个带有预测偏移量的锚框而生成。下面我们实现了offset_inverse函数,该函数将锚框和偏移量预测作为输入,并应用逆偏移变换来返回预测的边界框坐标。输入: 锚框 和 偏移量预测输出:根据锚框的原始坐标和预测的偏移量 计算出的 预测的边界框坐标
'''
def offset_inverse(anchors, offset_preds):"""根据带有预测偏移量的锚框来预测边界框"""anc = d2l.box_corner_to_center(anchors)pred_bbox_xy = (offset_preds[:, :2] * anc[:, 2:] / 10) + anc[:, :2]pred_bbox_wh = torch.exp(offset_preds[:, 2:] / 5) * anc[:, 2:]pred_bbox = torch.cat((pred_bbox_xy, pred_bbox_wh), axis=1)predicted_bbox = d2l.box_center_to_corner(pred_bbox)return predicted_bbox
'''按降序对置信度进行排序并返回其索引'''
#@save
def nms(boxes, scores, iou_threshold):"""对预测边界框的置信度进行排序"""B = torch.argsort(scores, dim=-1, descending=True)keep = []# 保留预测边界框的指标while B.numel() > 0:i = B[0]keep.append(i)if B.numel() == 1: breakiou = box_iou(boxes[i, :].reshape(-1, 4),boxes[B[1:], :].reshape(-1, 4)).reshape(-1)inds = torch.nonzero(iou <= iou_threshold).reshape(-1)B = B[inds + 1]return torch.tensor(keep, device=boxes.device)
def multibox_detection(cls_probs, offset_preds, anchors, nms_threshold=0.5,pos_threshold=0.009999999):"""使用非极大值抑制来预测边界框"""device, batch_size = cls_probs.device, cls_probs.shape[0]anchors = anchors.squeeze(0)num_classes, num_anchors = cls_probs.shape[1], cls_probs.shape[2]out = []for i in range(batch_size):cls_prob, offset_pred = cls_probs[i], offset_preds[i].reshape(-1, 4)conf, class_id = torch.max(cls_prob[1:], 0)'''调用offset_inverse'''predicted_bb = offset_inverse(anchors, offset_pred)'''调用nms'''keep = nms(predicted_bb, conf, nms_threshold)# 找到所有的non_keep索引,并将类设置为背景all_idx = torch.arange(num_anchors, dtype=torch.long, device=device)combined = torch.cat((keep, all_idx))uniques, counts = combined.unique(return_counts=True)non_keep = uniques[counts == 1]all_id_sorted = torch.cat((keep, non_keep))class_id[non_keep] = -1class_id = class_id[all_id_sorted]conf, predicted_bb = conf[all_id_sorted], predicted_bb[all_id_sorted]# pos_threshold是一个用于非背景预测的阈值below_min_idx = (conf < pos_threshold)class_id[below_min_idx] = -1conf[below_min_idx] = 1 - conf[below_min_idx]pred_info = torch.cat((class_id.unsqueeze(1),conf.unsqueeze(1),predicted_bb), dim=1)out.append(pred_info)return torch.stack(out)
相关文章:

13.4 目标检测锚框标注 非极大值抑制
锚框的形状计算公式 假设原图的高为H,宽为W 锚框形状详细公式推导 以每个像素为中心生成不同形状的锚框 # s是缩放比,ratio是宽高比 def multibox_prior(data, sizes, ratios):"""生成以每个像素为中心具有不同形状的锚框"""in_he…...

【论文笔记】最近看的时空数据挖掘综述整理8.27
Deep Learning for Spatio-Temporal Data Mining: A Survey 被引用次数:392 [Submitted on 11 Jun 2019 (v1), last revised 24 Jun 2019 (this version, v2)] 主要内容: 该论文是一篇关于深度学习在时空数据挖掘中的应用的综述。论文首先介绍了时空数…...

【大模型】基于 LlaMA2 的高 star 的 GitHub 开源项目汇总
【大模型】基于 LlaMA2 的高 star 的 GitHub 开源项目汇总 Llama2 简介开源项目汇总NO1. FlagAlpha/Llama2-ChineseNO2. hiyouga/LLaMA-Efficient-TuningNO3. yangjianxin1/FireflyNO4. LinkSoul-AI/Chinese-Llama-2-7bNO5. wenge-research/YaYiNO6. michael-wzhu/Chinese-LlaM…...

解决elementUI打包上线后icon图标偶尔乱码的问题
解决vue-elementUI打包后icon图标偶尔乱码的问题 一、背景二、现象三、原因四、处理方法方式1:使用css-unicode-loader方式2:升高 sass版本到1.39.0方式3:替换element-ui的样式文件方式4:更换打包压缩方式知识扩展:方式…...

yolov3加上迁移学习和适度的数据增强形成的网络应用在输电线异物检测
Neural Detection of Foreign Objects for Transmission Lines in Power Systems Abstract. 输电线路为电能从一个地方输送到另一个地方提供了一条路径,确保输电线路的正常运行是向城市和企业供电的先决条件。主要威胁来自外来物,可能导致电力传输中断。…...

香橙派OrangePi zero H2+ 驱动移远EC200A
1 系统内核: Linux orangepizero 5.4.65-sunxi #2.2.2 SMP Tue Aug 15 17:45:28 CST 2023 armv7l armv7l armv7l GNU/Linux 1.1 下载内核头安装 下载:orangepi800 内核头rk3399链接https://download.csdn.net/download/weixin_37613240/87635781 1.1.1…...
写一个java中如何用JSch来连接sftp的类并做测试?(亲测)
当使用JSch连接SFTP服务器的类,并进行测试时,可以按照以下步骤操作: 添加JSch库的依赖项。在你的项目中添加JSch库的Maven依赖项(如前面所述)或下载JAR文件并将其包含在项目中。 <dependency> <groupId&…...

【沐风老师】如何在3dMax中将3D物体转化为样条线构成的对象?
在3dMax中如何把三维物体转化为由样条线构成的对象?通常这样的场景会出现在科研绘图或一些艺术创作当中,下面给大家详细讲解一种3dmax三维物体转样条线的方法。 第一部分:用粒子填充3D对象: 1.创建一个三维对象(本例…...

2023国赛数学建模思路 - 案例:随机森林
文章目录 1 什么是随机森林?2 随机深林构造流程3 随机森林的优缺点3.1 优点3.2 缺点 4 随机深林算法实现 建模资料 ## 0 赛题思路 (赛题出来以后第一时间在CSDN分享) https://blog.csdn.net/dc_sinor?typeblog 1 什么是随机森林ÿ…...

wxpython:wx.html2 是好用的 WebView 组件
wxpython : wx.html2 是好用的 WebView 组件。 pip install wxpython4.2 wxPython-4.2.0-cp37-cp37m-win_amd64.whl (18.0 MB) Successfully installed wxpython-4.2.0 cd \Python37\Scripts wxdemo.exe 取得 wxPython-demo-4.2.0.tar.gz wxdocs.exe 取得 wxPython-docs-4.…...

《QT+PCL 第五章》点云特征-PFH
QT增加点云特征PFH 代码用法代码 #include <pcl/io/pcd_io.h> #include <pcl/features/normal_3d.h> #include <pcl/features/pfh.h>int main...

【分享】小型园区组网场景
小型园区组网图 在小型园区中,S2700&S3700通常部署在网络的接入层,S5700&S6700通常部署在网络的核心,出口路由器一般选用AR系列路由器。 接入交换机与核心交换机通过Eth-Trunk组网保证可靠性。 每个部门业务划分到一个VLAN中&#…...

LeetCode 1267. 统计参与通信的服务器
【LetMeFly】1267.统计参与通信的服务器 力扣题目链接:https://leetcode.cn/problems/count-servers-that-communicate/ 这里有一幅服务器分布图,服务器的位置标识在 m * n 的整数矩阵网格 grid 中,1 表示单元格上有服务器,0 表…...
169. 多数元素(哈希表)
169. 多数元素 给定一个大小为 n 的数组 nums ,返回其中的多数元素。多数元素是指在数组中出现次数 大于 ⌊ n/2 ⌋ 的元素。 你可以假设数组是非空的,并且给定的数组总是存在多数元素。 class Solution { public:int majorityElement(vector<int&…...

微服务集成spring cloud sentinel
目录 1. sentinel使用场景 2. sentinel组成 3. sentinel dashboard搭建 4. sentinel客户端详细使用 4.1 引入依赖 4.2 application.properties增加dashboard注册地址 4.3 手动增加限流配置类 4.4 rest接口及service类 4.5 通过dashboard动态配置限流规则 1. sentinel使…...

2023年最新版Windows环境下|Java8(jdk1.8)安装教程
个人主页:平行线也会相交 欢迎 点赞👍 收藏✨ 留言✉ 加关注💓本文由 平行线也会相交 原创 收录于专栏【JavaSE_primary】 jdk1.8的下载和使用总共分为3个步骤: jdk1.8的下载、jdk1.8的安装、配置环境变量。 目录 一、jdk1.8下载…...
linux -- jdk 的安装
jdk 的安装 jdk包下载 链接: https://pan.baidu.com/s/1wa1TJGtCPKQqeCGDZWaP6g 密码: 8el6 安装及验证 ## jdk包上传次目录 /usr/local/software cd /usr/local/software tar -zxvf /usr/local/software/jdk-8u212-linux-x64.tar.gz -C /usr/local cd /usr/local mv jdk1…...

网络安全—黑客技术(学习笔记)
1.网络安全是什么 网络安全可以基于攻击和防御视角来分类,我们经常听到的 “红队”、“渗透测试” 等就是研究攻击技术,而“蓝队”、“安全运营”、“安全运维”则研究防御技术。 2.网络安全市场 一、是市场需求量高; 二、则是发展相对成熟…...
Java入职第十一天,深入了解静态代理和动态代理(jdk、cglib)
一、代理模式 一个类代表另一个类去完成扩展功能,在主体类的基础上,新增一个代理类,扩展主体类功能,不影响主体,完成额外功能。比如买车票,可以去代理点买,不用去火车站,主要包括静态代理和动态代理两种模式。 代理类中包含了主体类 二、静态代理 无法根据业务扩展,…...
Snappy算法:高速压缩和解压缩技术的顶尖玩家
文章首发地址 Snappy是一种快速压缩和解压缩数据的算法。它是由Google开发的,旨在提供高速的压缩和解压缩速度,同时保持较高的压缩比。 Snappy算法的设计目标是追求速度而不是最高的压缩率。相比于其他压缩算法(如Gzip或LZ77)&am…...

网络编程(Modbus进阶)
思维导图 Modbus RTU(先学一点理论) 概念 Modbus RTU 是工业自动化领域 最广泛应用的串行通信协议,由 Modicon 公司(现施耐德电气)于 1979 年推出。它以 高效率、强健性、易实现的特点成为工业控制系统的通信标准。 包…...
ubuntu搭建nfs服务centos挂载访问
在Ubuntu上设置NFS服务器 在Ubuntu上,你可以使用apt包管理器来安装NFS服务器。打开终端并运行: sudo apt update sudo apt install nfs-kernel-server创建共享目录 创建一个目录用于共享,例如/shared: sudo mkdir /shared sud…...

PPT|230页| 制造集团企业供应链端到端的数字化解决方案:从需求到结算的全链路业务闭环构建
制造业采购供应链管理是企业运营的核心环节,供应链协同管理在供应链上下游企业之间建立紧密的合作关系,通过信息共享、资源整合、业务协同等方式,实现供应链的全面管理和优化,提高供应链的效率和透明度,降低供应链的成…...

STM32F4基本定时器使用和原理详解
STM32F4基本定时器使用和原理详解 前言如何确定定时器挂载在哪条时钟线上配置及使用方法参数配置PrescalerCounter ModeCounter Periodauto-reload preloadTrigger Event Selection 中断配置生成的代码及使用方法初始化代码基本定时器触发DCA或者ADC的代码讲解中断代码定时启动…...
postgresql|数据库|只读用户的创建和删除(备忘)
CREATE USER read_only WITH PASSWORD 密码 -- 连接到xxx数据库 \c xxx -- 授予对xxx数据库的只读权限 GRANT CONNECT ON DATABASE xxx TO read_only; GRANT USAGE ON SCHEMA public TO read_only; GRANT SELECT ON ALL TABLES IN SCHEMA public TO read_only; GRANT EXECUTE O…...
全面解析各类VPN技术:GRE、IPsec、L2TP、SSL与MPLS VPN对比
目录 引言 VPN技术概述 GRE VPN 3.1 GRE封装结构 3.2 GRE的应用场景 GRE over IPsec 4.1 GRE over IPsec封装结构 4.2 为什么使用GRE over IPsec? IPsec VPN 5.1 IPsec传输模式(Transport Mode) 5.2 IPsec隧道模式(Tunne…...

短视频矩阵系统文案创作功能开发实践,定制化开发
在短视频行业迅猛发展的当下,企业和个人创作者为了扩大影响力、提升传播效果,纷纷采用短视频矩阵运营策略,同时管理多个平台、多个账号的内容发布。然而,频繁的文案创作需求让运营者疲于应对,如何高效产出高质量文案成…...

STM32HAL库USART源代码解析及应用
STM32HAL库USART源代码解析 前言STM32CubeIDE配置串口USART和UART的选择使用模式参数设置GPIO配置DMA配置中断配置硬件流控制使能生成代码解析和使用方法串口初始化__UART_HandleTypeDef结构体浅析HAL库代码实际使用方法使用轮询方式发送使用轮询方式接收使用中断方式发送使用中…...

数据结构:递归的种类(Types of Recursion)
目录 尾递归(Tail Recursion) 什么是 Loop(循环)? 复杂度分析 头递归(Head Recursion) 树形递归(Tree Recursion) 线性递归(Linear Recursion)…...

Python训练营-Day26-函数专题1:函数定义与参数
题目1:计算圆的面积 任务: 编写一个名为 calculate_circle_area 的函数,该函数接收圆的半径 radius 作为参数,并返回圆的面积。圆的面积 π * radius (可以使用 math.pi 作为 π 的值)要求:函数接收一个位置参数 radi…...