Yolo系列-yolov2
YOLO-V2
更快!更强!
YOLO-V2-BatchNormalization
BatchNormalization(批归一化)是一个常用的深度神经网络优化技术,它可以将输入数据进行归一化处理,使得神经网络更容易进行学习。在YOLOv2中,BatchNormalization主要用于减少过拟合,提高模型的泛化能力和训练速度。
具体而言,YOLOv2中的BatchNormalization包含两个部分:归一化和放缩。归一化是指将输入数据进行零均值化和单位方差化处理,使得每个特征的值落在较小的范围内,有利于网络的学习。放缩是指通过乘以一个可学习的标量和加上一个可学习的偏移量来还原数据的原始分布,从而保留数据的表达能力。这两个过程的组合可以减少梯度消失和梯度爆炸问题,提高模型的稳定性和收敛速度。
总之,BatchNormalization是一种有效的优化技术,可以使得神经网络更加健壮,具有更好的泛化能力和训练速度。在YOLOv2中,BatchNormalization被广泛应用,并取得了显著的效果。
YOLO-V2-更大的分辨率
V1训练时用的是224224,测试时使用448448
可能导致模型水土不服,V2训练时额外又进行了10次448*448的微调使用高分辨率分类器后,YOLOv2的mAP提升了约4%
YOLO-V2的网络结构

YOLO-V2-聚类提取先验框

YOLO-V2-AnchorBox
通过引入anchorboxes,使得预测的box数量更多(1313n)
跟faster-rcnn系列不同的是先验框并不是直接按照长宽固定比给定
YOLO-V2-DirectedLocationPrediction

感受野
概述来说就是特征图上的点能看到原始图像多大区域

如果堆叠3个3x3的卷积层,并且保持滑动窗口步长为1,其感受野就是7*7的了,这跟一个使用7x7卷积核的结果是一样的,那为什么非要堆叠3个小卷积呢?
假设输入大小都是hwc,并且都使用c个卷积核(得到c个特征图),可以来计算一下其各自所需参数:

很明显,堆叠小的卷积核所需的参数更少一些,并且卷积过程越多,特征提取也会越细致,加入的非线性变换也随着增多,还不会增大权重参数个数,这就是VGG网络的基本出发点,用小的卷积核来完成体特征提取操作。
YOLO-V2-Fine-GrainedFeatures
最后一层时感受野太大了,小目标可能丢失了,需融合之前的特征
YOLO-V2-Multi-Scale
都是卷积操作可没人能限制我了!一定iterations之后改变输入图片大小最小的图像尺寸为320x320
最大的图像尺寸为608x608

相关文章:
Yolo系列-yolov2
YOLO-V2 更快!更强! YOLO-V2-BatchNormalization BatchNormalization(批归一化)是一个常用的深度神经网络优化技术,它可以将输入数据进行归一化处理,使得神经网络更容易进行学习。在YOLOv2中,B…...
Linux下的系统编程——vim/gcc编辑(二)
前言: 在Linux操作系统之中有很多使用的工具,我们可以用vim来进行程序的编写,然后用gcc来生成可执行文件,最终运行程序。下面就让我们一起了解一下vim和gcc吧 目录 一、vim编辑 1.vim的三种工作模式 2.基本操作之跳转字符 &a…...
2023年国赛 高教社杯数学建模思路 - 案例:最短时间生产计划安排
文章目录 0 赛题思路1 模型描述2 实例2.1 问题描述2.2 数学模型2.2.1 模型流程2.2.2 符号约定2.2.3 求解模型 2.3 相关代码2.4 模型求解结果 建模资料 0 赛题思路 (赛题出来以后第一时间在CSDN分享) https://blog.csdn.net/dc_sinor?typeblog 最短时…...
芯科科技推出专为Amazon Sidewalk优化的全新片上系统和开发工具,加速Sidewalk网络采用
芯科科技为Sidewalk开发提供专家级支持 中国,北京 - 2023年8月22日 – 致力于以安全、智能无线连接技术,建立更互联世界的全球领导厂商Silicon Labs(亦称“芯科科技”,NASDAQ:SLAB)今日在其一年一度的第四…...
Kotlin 丰富的函数特性
Kotlin 是一门基于 JVM 的现代编程语言,它提供了丰富的函数特性,使得编写简洁、灵活且可读性强的代码成为可能。以下是 Kotlin 函数的一些主要特性: 一、函数声明与调用 在 Kotlin 中,使用 fun 关键字来声明函数。函数声明的基本…...
Node.js怎么搭建HTTP服务器
在 Node.js 中搭建一个简单的 HTTP 服务器非常容易。以下是一个基本的示例,演示如何使用 Node.js 创建一个简单的 HTTP 服务器: // 导入 http 模块 const http require(http); // 创建一个 HTTP 服务器 const server http.createServer((req, res) …...
基于Redisson的联锁(MultiLock)
基于Redis的分布式MultiLock对象允许对Lock对象进行分组并将它们作为单个锁进行处理。每个RLock对象可能属于不同的Redisson实例。 如果获取的Redisson实例MultiLock崩溃,那么它可能永远挂在获取状态。为了避免这种情况,Redisson维护了一个锁看门狗&…...
人脸识别平台批量导入绑定设备的一种方法
因为原先平台绑定设备是通过一个界面进行人工选择绑定或一个人一个人绑定设备。如下: 但有时候需要在几千个里选择出几百个,那这种方式就不大现实了,需要另外一种方法。 目前相到可以通过导入批量数据进行绑定的方式。 一、前端 主要是显示…...
MySQL—MySQL的NULL值是怎么存放的
一、引言 1、MySQL数据存放在哪个文件? 创建一个数据库会产生三种格式的文件,分别是.opt格式、.frm格式、.ibd格式。 opt格式:用来存储当前数据库的默认字符集和字符校验规则。 frm格式:该文件是用来保存每个表的元数据信息的&…...
sql server删除历史数据
1 函数 datediff函数: DATEDIFF ( datepart , startdate , enddate )datepart的取值可以是year,quarter,Month,dayofyear,Day,Week,Hour,minute,second,millisecond startdate 是从 enddate 减去。如果 startdate 比 enddate 晚,返回负值。 2 例子 删除2023年以…...
目标检测项目中,使用python+xml.etree.ElementTree修改xml格式标注文件中的类别名称
需求: 数据集的数据增强中,有时需要将xml标注文件中的类别做修改为新类别,或者将几个类别合并为一个类别。 解决方法: 使用pythonimport xml.etree.ElementTree将xml标注文件中的类别名称做修改。代码如下&…...
最新域名和子域名信息收集技术
域名信息收集 1.WHOIS查询 WHOIS是一个标准的互联网协议,可用于收集网络注册信息、注册域名﹑IP地址等信息。简单来说,WHOIS就是一个用于查询域名是否已被注册及注册域名详细信息的数据库(如域名所有人、域名注册商)…...
C语言基础之——指针(上)
前言:小伙伴们又见面啦!本期内容,博主将展开讲解有关C语言中指针的上半部分基础知识,一起学习起来叭!!! 目录 一.什么是指针 二.指针类型 1.指针的解引用 2.指针-整数 三.野指针 1.野指针…...
构建 NodeJS 影院预订微服务并使用 docker 部署(04/4)
一、说明 构建一个微服务的电影网站,需要Docker、NodeJS、MongoDB,这样的案例您见过吗?如果对此有兴趣,您就继续往下看吧。 我们前几章的快速回顾 第一篇文章介绍了微服务架构模式,并讨论了使用微服务的优缺点。第二篇…...
SpringBootWeb案例 Part3
目录 1. 新增员工 1.1 需求 1.2 接口文档 1.3 思路分析 PostMapping RequestBody //把前端传递的JSON数据填充到实体类中 1.4 功能开发 1.5 功能测试 1.6 前后端联调 2. 文件上传 2.1 文件上传简介 Spring中提供了一个API:MultipartFile,使…...
C++中using 用法
C中的 using 关键字用于引入命名空间、类型别名和模板别名。以下是 using 关键字的几种常见用法及其中文解析: 1. 引入命名空间: using namespace std; 中文解析:引入 std 命名空间,使得命名空间中的成员在当前作用域内可直接使…...
window下jdk安装及更换jdk版本的一些问题。
目录 jdk安装jdk的选择。oracle的jdk怎么安装。openjdk怎么安装。 jdk的版本控制。更换jdk的一些问题。 jdk安装 jdk的选择。 目前有两种可选的jdk,oracle的和开源的Openjdk,这两种jdk的区别可以自行查阅,就结果而言,openjdk开源…...
GPT4模型架构的泄漏与分析
迄今为止,GPT4 模型是突破性的模型,可以免费或通过其商业门户(供公开测试版使用)向公众提供。它为许多企业家激发了新的项目想法和用例,但对参数数量和模型的保密却扼杀了所有押注于第一个 1 万亿参数模型到 100 万亿参…...
GEE/PIE遥感大数据处理与典型案例丨数据整合Reduce、云端数据可视化、数据导入导出及资产管理、机器学习算法等
目录 专题一:初识GEE和PIE遥感云平台 专题二:GEE和PIE影像大数据处理基础 专题三:数据整合Reduce 专题四:云端数据可视化 专题五:数据导入导出及资产管理 专题六:机器学习算法 专题七:…...
STM32--DMA
文章目录 DMA简介DMA特性 DMA框图DMA基本结构DMA请求数据宽度对齐DMA数据转运工程DMAADC多通道 DMA简介 直接存储器存取(DMA)用来提供在外设和存储器之间或者存储器和存储器之间的高速数据传输。无须CPU干预,数据可以通过DMA快速地移动,这就节省了CPU的…...
线程与协程
1. 线程与协程 1.1. “函数调用级别”的切换、上下文切换 1. 函数调用级别的切换 “函数调用级别的切换”是指:像函数调用/返回一样轻量地完成任务切换。 举例说明: 当你在程序中写一个函数调用: funcA() 然后 funcA 执行完后返回&…...
系统设计 --- MongoDB亿级数据查询优化策略
系统设计 --- MongoDB亿级数据查询分表策略 背景Solution --- 分表 背景 使用audit log实现Audi Trail功能 Audit Trail范围: 六个月数据量: 每秒5-7条audi log,共计7千万 – 1亿条数据需要实现全文检索按照时间倒序因为license问题,不能使用ELK只能使用…...
[ICLR 2022]How Much Can CLIP Benefit Vision-and-Language Tasks?
论文网址:pdf 英文是纯手打的!论文原文的summarizing and paraphrasing。可能会出现难以避免的拼写错误和语法错误,若有发现欢迎评论指正!文章偏向于笔记,谨慎食用 目录 1. 心得 2. 论文逐段精读 2.1. Abstract 2…...
Java-41 深入浅出 Spring - 声明式事务的支持 事务配置 XML模式 XML+注解模式
点一下关注吧!!!非常感谢!!持续更新!!! 🚀 AI篇持续更新中!(长期更新) 目前2025年06月05日更新到: AI炼丹日志-28 - Aud…...
学习STC51单片机32(芯片为STC89C52RCRC)OLED显示屏2
每日一言 今天的每一份坚持,都是在为未来积攒底气。 案例:OLED显示一个A 这边观察到一个点,怎么雪花了就是都是乱七八糟的占满了屏幕。。 解释 : 如果代码里信号切换太快(比如 SDA 刚变,SCL 立刻变&#…...
使用Spring AI和MCP协议构建图片搜索服务
目录 使用Spring AI和MCP协议构建图片搜索服务 引言 技术栈概览 项目架构设计 架构图 服务端开发 1. 创建Spring Boot项目 2. 实现图片搜索工具 3. 配置传输模式 Stdio模式(本地调用) SSE模式(远程调用) 4. 注册工具提…...
C/C++ 中附加包含目录、附加库目录与附加依赖项详解
在 C/C 编程的编译和链接过程中,附加包含目录、附加库目录和附加依赖项是三个至关重要的设置,它们相互配合,确保程序能够正确引用外部资源并顺利构建。虽然在学习过程中,这些概念容易让人混淆,但深入理解它们的作用和联…...
接口自动化测试:HttpRunner基础
相关文档 HttpRunner V3.x中文文档 HttpRunner 用户指南 使用HttpRunner 3.x实现接口自动化测试 HttpRunner介绍 HttpRunner 是一个开源的 API 测试工具,支持 HTTP(S)/HTTP2/WebSocket/RPC 等网络协议,涵盖接口测试、性能测试、数字体验监测等测试类型…...
苹果AI眼镜:从“工具”到“社交姿态”的范式革命——重新定义AI交互入口的未来机会
在2025年的AI硬件浪潮中,苹果AI眼镜(Apple Glasses)正在引发一场关于“人机交互形态”的深度思考。它并非简单地替代AirPods或Apple Watch,而是开辟了一个全新的、日常可接受的AI入口。其核心价值不在于功能的堆叠,而在于如何通过形态设计打破社交壁垒,成为用户“全天佩戴…...
python爬虫——气象数据爬取
一、导入库与全局配置 python 运行 import json import datetime import time import requests from sqlalchemy import create_engine import csv import pandas as pd作用: 引入数据解析、网络请求、时间处理、数据库操作等所需库。requests:发送 …...
