(一)连续随机量的生成-基于分布函数
连续随机量的生成-基于分布函数
- 1. 概率积分变换方法(分布函数)
- 2. Python编程实现指数分布的采样
1. 概率积分变换方法(分布函数)
Consider drawing a random quantity X X X from a continuous probability distribution with the distribution function F F F. We know F F F is a continues nondecreasing function if F F F has an inverse F − 1 F^{-1} F−1, then Z = F − 1 ( U ) Z=F^{-1}(U) Z=F−1(U), where U U U is a random quantity drawn from U ( [ 0 , 1 ] ) U([0,1]) U([0,1]), is a random quantity as desired. Indeed,
P ( X ⩽ z ) = P ( F − 1 ( U ) ⩽ z ) = P ( U ⩽ F ( z ) ) = F ( z ) , ∀ z ∈ R P(X \leqslant z)=P\left(F^{-1}(U) \leqslant z\right)=P(U \leqslant F(z))=F(z), \forall z \in \mathbb{R} P(X⩽z)=P(F−1(U)⩽z)=P(U⩽F(z))=F(z),∀z∈R
Example: Exponential distribution Exp ( 1 ) \operatorname{Exp} (1) Exp(1).
Exp (1) has a probability density function: f ( z ) = { e − z , z ⩾ 0 , 0 , z < 0. f(z)= \begin{cases}e^{-z}, & z \geqslant 0, \\ 0, & z<0 .\end{cases} f(z)={e−z,0,z⩾0,z<0.
Its distribution function is F ( z ) = { 1 − e − z , z ⩾ 0 , 0 , z < 0. F(z)= \begin{cases}1-e^{-z}, & z \geqslant 0, \\ 0, & z<0 .\end{cases} F(z)={1−e−z,0,z⩾0,z<0.
We only need to concentrate on F ( z ) F(z) F(z) on [ 0 , ∞ ) [0, \infty) [0,∞), and have
F − 1 ( z ) = − log ( 1 − z ) . F^{-1}(z)=-\log (1-z). F−1(z)=−log(1−z).
So F − 1 ( U ) = − log ( 1 − U ) F^{-1}(U)=-\log (1-U) F−1(U)=−log(1−U) has a probability distribution Exp ( 1 ) (1) (1). Because 1 − U ∼ U ( [ 0 , 1 ] ) 1-U \sim U([0,1]) 1−U∼U([0,1]), we have − log U ∼ Exp ( 1 ) -\log U \sim \operatorname{Exp}(1) −logU∼Exp(1).
For a distribution function which does not have an inverse, we define a generalized inverse as the following:
F − ( z ) = inf { x ∈ R : F ( x ) ⩾ z } . F^{-}(z)=\inf \{x \in \mathbb{R}: F(x) \geqslant z\} . F−(z)=inf{x∈R:F(x)⩾z}.
2. Python编程实现指数分布的采样
Assignment: Sample a random quantity Z ∼ Exp ( λ ) Z \sim \operatorname{Exp}(\lambda) Z∼Exp(λ) for some λ > 0 \lambda>0 λ>0.
import numpy as np
import matplotlib.pyplot as plt# Parameter for the exponential distribution
lambda_value = 0.5# Generate random quantity using CDF method
u = np.random.rand(1000) # Uniform random numbers between 0 and 1
Z = -np.log(1 - u) / lambda_value# Plot histogram
plt.hist(Z, bins=30, density=True, alpha=0.6, color='b', label='Sampled Data')
plt.xlabel('Value')
plt.ylabel('Density')
plt.title('Histogram of Exponential Distribution (Generated using CDF)')
plt.legend()
plt.grid(True)
plt.show()
相关文章:
(一)连续随机量的生成-基于分布函数
连续随机量的生成-基于分布函数 1. 概率积分变换方法(分布函数)2. Python编程实现指数分布的采样 1. 概率积分变换方法(分布函数) Consider drawing a random quantity X X X from a continuous probability distribution with …...
【springboot】Spring Cache缓存:
文章目录 一、导入Maven依赖:二、实现思路:三、代码开发: 一、导入Maven依赖: <dependency><groupId>org.springframework.boot</groupId><artifactId>spring-boot-starter-cache</artifactId><…...
数学建模-建模算法(4)
python虽然不是完全为数学建模而生的,但是它完整的库让它越来越适合建模了。 - 线性规划:使用scipy.optimize.linprog()函数 python from scipy.optimize import linprogc [-1, 4] A [[-3, 1], [1, 2]] b [6, 4] x0_bounds (None, None) x1_bound…...
python之函数返回数据框
1.原始文件 ##gff-version 3 Chr1A IWGSC_v2.1 gene 40098 70338 33 - . IDTraesCS1A03G0000200;previous_idTraesCS1A02G000100;primconfHC;NameTraesCS1A03G0000200;cdsCDS_OK;mappingfullMatchWithMissmatches Chr1A IWGSC_v2.1 mRN…...
电子商务安全体系架构技术方面
技术方面是本文所要阐述的主要方面,因为它能够依靠企业自 身的努力来达到令人满意的安全保障效果。目前,关于电子商务安全体系的研究比 较多,有基于层次的体系,也有基于对象的体系,还有基于风险管理的体系࿰…...
新安装IDEA 常用插件、设置
新安装IDEA 常用插件、设置 mybatiscodeHelperProRestfulToolkit-fixJrebelmybatis log freepojo to jsonGrep ConsoleMaven HelperCamelCaseCamelCase常用设置 mybatiscodeHelperPro mapper.xml 编码校验 sql 生成,代码生成 RestfulToolkit-fix URI 跳转到对应的…...
ChromeOS 的 Linux 操作系统和 Chrome 浏览器分离
导读科技媒体 Ars Technica 报道称,谷歌正在将 ChromeOS 的浏览器从操作系统中分离出来 —— 让它变得更像 Linux。虽然目前还没有任何官方消息,但这项变化可能会在本月的版本更新中推出。 据介绍,谷歌将该项目命名为 "Lacros"——…...
哔哩哔哩 B站 bilibili 视频倍速设置 视频倍速可自定义
目录 一、复制如下代码 二、在B站视频播放页面进入控制台 三、将复制的代码粘贴到下方输入框,并 回车Enter 即可 四、然后就可以了 一、复制如下代码 (该代码用于设置倍速为3,最后的数值是多少就是多少倍速,可以带小数点&#…...
Lazada商品详情接口 获取Lazada商品详情数据 Lazada商品价格接
一、引言 随着电子商务的迅速发展和普及,电商平台之间的竞争也日趋激烈。为了提供更好的用户体验和更高效的后端管理,Lazada作为东南亚最大的电商平台之一,开发了一种商品详情接口(Product Detail API)。该接口允许第…...
路由攻击(ospf attack)及C/C++代码实现
开放式最短路径优先(OSPF)是应用最广泛的域内路由协议之一。不幸的是,它有许多严重的安全问题。OSPF上的伪造是可能导致路由循环和黑洞的最关键的漏洞之一。 大多数已知的OSPF攻击基于伪造攻击者控制的路由器的链路状态通告(LSA&…...
nginx配置站点强制开启https
当站点域名配置完SSL证书后,如果要强制开启HTTPS,可以在站点配置文件中加上: #HTTP_TO_HTTPS_START if ($server_port !~ 443){rewrite ^(/.*)$ https://$host$1 permanent; } #HTTP_TO_HTTPS_END 附上完整的配置完SSL证书,强制…...
Jacoco XML 解析
1 XML解析器对比 1. DOM解析器: ○ 优点:易于使用,提供完整的文档树,可以方便地修改和遍历XML文档。 ○ 缺点:对大型文档消耗内存较多,加载整个文档可能会变慢。 ○ 适用场景:适合小型XML文档…...
【面试题】JDK(工具包)、JRE(运行环境和基础库)、JVM(java虚拟机)之间的关系?
【面试题】JDK、JRE、JVM之间的关系? JDK(Java Development Kit):Java开发工具包,提供给Java程序员使用,包含了JRE,同时还包含了编译器javac与自带的调试工具Jconsole、jstack等。 JRE(Java Runtime Environment):Java运行时环境&…...
软件设计师学习笔记7-输入输出技术+总线+可靠性+性能指标
目录 1.输入输出技术 1.1数据传输控制方式 1.2中断处理过程 2.总线 3.可靠性 3.1可靠性指标 3.2串联系统与并联系统 3.3混合模型 4.性能指标 1.输入输出技术 即CPU控制主存与外设交互的过程 1.1数据传输控制方式 (1)程序控制(查询)方式&…...
Windows下MATLAB调用Python函数操作说明
MATLAB与Python版本的兼容 具体可参看MATLAB与Python版本的兼容 操作说明 操作说明请参看下面两个链接: 操作指南 简单说明: 我安装的是MATLAB2022a和Python3.8.6(安装时请勾选所有可以勾选的,包括路径)。对应版本安…...
【android12-linux-5.1】【ST芯片】驱动与HAL移植后数据方向异常
ST的传感器驱动与HAL一直成功后,能拿到数据了,但是设备是横屏,系统默认是竖屏。就会出现屏幕自动转动时方向是错的的情况,设备横立展示的是竖屏,设备竖立展示的是横屏。 这个是PCB上设计的传感器贴片方向和横屏不一致…...
JavaScript Es6_3笔记
JavaScript 进阶 文章目录 JavaScript 进阶编程思想面向过程面向对象 构造函数原型对象constructor 属性对象原型原型继承原型链 了解构造函数原型对象的语法特征,掌握 JavaScript 中面向对象编程的实现方式,基于面向对象编程思想实现 DOM 操作的封装。 …...
Qt产生随机数
Qt产生随机数 提问:注意:实现: 提问: 有没有小伙伴遇到这么一种情况,使用rand()和qrand()函数生成的随机数好像不是那么随机,每次都一样。那这种就叫做“伪随机”,因为没有种随机数种子&#x…...
postgresql常用函数-数学函数
postgresql常用函数 简介数学函数算术运算符绝对值取整函数乘方与开方指数与对数整数商和余数弧度与角度常量 π符号函数生成随机数 简介 函数(function)是一些预定义好的代码模块,可以将输入进行计算和处理,最终输出一个 结果值…...
【排序】快速排序(前后指针法)—— 考的最少的一种算法
以从小到大的顺序进行说明。 前后指针法 是指对于一个数组,定义前后各一个指针(prev 和 cur) prev用于卡一个比基准值大的值进行交换cur用于向前遍历出比基准值小的,和prev进行交换 图解 初始化 选出基准值4 如果cur 所在的值…...
KubeSphere 容器平台高可用:环境搭建与可视化操作指南
Linux_k8s篇 欢迎来到Linux的世界,看笔记好好学多敲多打,每个人都是大神! 题目:KubeSphere 容器平台高可用:环境搭建与可视化操作指南 版本号: 1.0,0 作者: 老王要学习 日期: 2025.06.05 适用环境: Ubuntu22 文档说…...
Linux应用开发之网络套接字编程(实例篇)
服务端与客户端单连接 服务端代码 #include <sys/socket.h> #include <sys/types.h> #include <netinet/in.h> #include <stdio.h> #include <stdlib.h> #include <string.h> #include <arpa/inet.h> #include <pthread.h> …...
【算法训练营Day07】字符串part1
文章目录 反转字符串反转字符串II替换数字 反转字符串 题目链接:344. 反转字符串 双指针法,两个指针的元素直接调转即可 class Solution {public void reverseString(char[] s) {int head 0;int end s.length - 1;while(head < end) {char temp …...
让AI看见世界:MCP协议与服务器的工作原理
让AI看见世界:MCP协议与服务器的工作原理 MCP(Model Context Protocol)是一种创新的通信协议,旨在让大型语言模型能够安全、高效地与外部资源进行交互。在AI技术快速发展的今天,MCP正成为连接AI与现实世界的重要桥梁。…...
【JavaWeb】Docker项目部署
引言 之前学习了Linux操作系统的常见命令,在Linux上安装软件,以及如何在Linux上部署一个单体项目,大多数同学都会有相同的感受,那就是麻烦。 核心体现在三点: 命令太多了,记不住 软件安装包名字复杂&…...
力扣-35.搜索插入位置
题目描述 给定一个排序数组和一个目标值,在数组中找到目标值,并返回其索引。如果目标值不存在于数组中,返回它将会被按顺序插入的位置。 请必须使用时间复杂度为 O(log n) 的算法。 class Solution {public int searchInsert(int[] nums, …...
【无标题】路径问题的革命性重构:基于二维拓扑收缩色动力学模型的零点隧穿理论
路径问题的革命性重构:基于二维拓扑收缩色动力学模型的零点隧穿理论 一、传统路径模型的根本缺陷 在经典正方形路径问题中(图1): mermaid graph LR A((A)) --- B((B)) B --- C((C)) C --- D((D)) D --- A A -.- C[无直接路径] B -…...
C++课设:简易日历程序(支持传统节假日 + 二十四节气 + 个人纪念日管理)
名人说:路漫漫其修远兮,吾将上下而求索。—— 屈原《离骚》 创作者:Code_流苏(CSDN)(一个喜欢古诗词和编程的Coder😊) 专栏介绍:《编程项目实战》 目录 一、为什么要开发一个日历程序?1. 深入理解时间算法2. 练习面向对象设计3. 学习数据结构应用二、核心算法深度解析…...
从“安全密码”到测试体系:Gitee Test 赋能关键领域软件质量保障
关键领域软件测试的"安全密码":Gitee Test如何破解行业痛点 在数字化浪潮席卷全球的今天,软件系统已成为国家关键领域的"神经中枢"。从国防军工到能源电力,从金融交易到交通管控,这些关乎国计民生的关键领域…...
十九、【用户管理与权限 - 篇一】后端基础:用户列表与角色模型的初步构建
【用户管理与权限 - 篇一】后端基础:用户列表与角色模型的初步构建 前言准备工作第一部分:回顾 Django 内置的 `User` 模型第二部分:设计并创建 `Role` 和 `UserProfile` 模型第三部分:创建 Serializers第四部分:创建 ViewSets第五部分:注册 API 路由第六部分:后端初步测…...
