当前位置: 首页 > news >正文

【mindspore学习】环境配置

本次实验搭配的环境是 CUDA 11.6 + CUDNN v8.9.4 + TensorRT-8.4.1.5 + mindspore 2.1.0。
1、配置 Nvidia 显卡驱动

如果原来的主机已经安装了 nvidia 驱动,为避免版本的冲突,建议先清除掉旧的 nvidia驱动

sudo apt-get --purge remove nvidia*
sudo apt autoremove
sudo apt-get --purge remove "*cublas*" "cuda*"
sudo apt-get --purge remove "*nvidia*"
sudo apt-get install linux-headers-$(uname -r)

关闭系统自带驱动nouveau,执行 sudo gedit /etc/modprobe.d/blacklist.conf 在末尾追加

blacklist nouveau
options nouveau modeset=0
sudo update-initramfs -u

安装NVIDIA驱动 下载地址

chmod a+x NVIDIA-Linux-x86_64-535.104.05.run 
./NVIDIA-Linux-x86_64-535.104.05.run -no-x-check -no-nouveau-check -no-opengl-files
sudo bash ./NVIDIA-Linux-x86_64-535.104.05.run -no-x-check -no-nouveau-check -no-opengl-files

安装之后先重启主机 (执行 sudo reboot),然后检查驱动(执行nvidia-smi)是否安装成功

在这里插入图片描述
出现图示结果代表驱动安装成功

2、安装 CUDA-11.6

## 先安装CUDA前需要先安装相关依赖,执行以下命令
sudo apt-get install linux-headers-$(uname -r) 
wget https://developer.download.nvidia.com/compute/cuda/11.6.0/local_installers/cuda_11.6.0_510.39.01_linux.run
sudo sh cuda_11.6.0_510.39.01_linux.run
echo -e "export PATH=/usr/local/cuda-11.6/bin:\$PATH" >> ~/.bashrc
echo -e "export LD_LIBRARY_PATH=/usr/local/cuda-11.6/lib64:\$LD_LIBRARY_PATH" >> ~/.bashrc
source ~/.bashrc

安装之后执行 nvcc --version 命令检查会输出以下提示
在这里插入图片描述

3、安装 CUDA-11.6配套的cuDNN v8.9.4

tar -xvf cudnn-linux-x86_64-8.9.4.25_cuda11-archive.tar
sudo cp cudnn-linux-x86_64-8.9.4.25_cuda11-archive/include/cudnn*.h /usr/local/cuda-11.6/include
sudo cp cudnn-linux-x86_64-8.9.4.25_cuda11-archive/lib64/libcudnn* /usr/local/cuda-11.6/lib64
sudo chmod a+r /usr/local/cuda-11.6/include/cudnn*.h /usr/local/cuda-11.6/lib64/libcudnn*

检查 CUDNN 是否安装成功

cat /usr/local/cuda-11.6/include/cudnn_version.h | grep CUDNN_MAJOR -A 2

在这里插入图片描述
输出上图结果表示配置成功,这里版本好是8.9.4

4、安装 minconda
下载可以从清华镜像源选择下载

wget https://mirrors.tuna.tsinghua.edu.cn/anaconda/miniconda/Miniconda3-py39_4.9.2-Linux-x86_64.sh
chmod a+x Miniconda3-py39_4.9.2-Linux-x86_64.sh 
bash Miniconda3-py39_4.9.2-Linux-x86_64.sh 
. ~/miniconda3/etc/profile.d/conda.sh

使用 conda 创建 mindspore 虚拟环境

conda init bash
conda create -n mindspore_py37 python=3.7.5 -y
conda activate mindspore_py37

设置 pip 源,这里可以选择清华源或者华为源,二选一。

python -m pip install --upgrade pip
pip config set global.index-url https://pypi.tuna.tsinghua.edu.cn/simple
pip config set global.index-url https://repo.huaweicloud.com/repository/pypi/simple

5、安装 TensorRT-8.4.1.5 下载地址

tar -xvf TensorRT-8.4.1.5.Linux.x86_64-gnu.cuda-11.6.cudnn8.4.tar.gz 
cd TensorRT-8.4.1.5/
echo -e "export TENSORRT_HOME=$PWD" >> ~/.bashrc
echo -e "export LD_LIBRARY_PATH=\$TENSORRT_HOME/lib:\$LD_LIBRARY_PATH" >> ~/.bashrc
source ~/.bashrc

通过 .whl 包安装 python 版本 tensorrt

cd $TENSORRT_HOME/python
pip install tensorrt-8.4.1.5-cp37-none-linux_x86_64.whl

执行测试

python -c "import tensorrt;print(tensorrt.__version__)"

在这里插入图片描述

6、安装 mindspore 2.1.0

export MS_VERSION=2.1.0
conda activate mindspore_py37
pip install https://ms-release.obs.cn-north-4.myhuaweicloud.com/${MS_VERSION}/MindSpore/unified/x86_64/mindspore-${MS_VERSION/-/}-cp37-cp37m-linux_x86_64.whl --trusted-host ms-release.obs.cn-north-4.myhuaweicloud.com -i https://pypi.tuna.tsinghua.edu.cn/simple

mindspore GPU 检查

python -c "import mindspore;mindspore.set_context(device_target='GPU');mindspore.run_check()"

在这里插入图片描述

7、 jupyter lab mindspore 环境管理

base 环境下安装 Jupyter Lab

conda activate base
conda install jupyter ipykernel

mindspore_py37 中安装 ipykernel

conda activate mindspore_py37
conda install ipykernel

将conda环境写入jupyter的kernel中
–name 环境名称
–display-name 在jupyter notebook看到的别名

python -m ipykernel install --user  --name mindspore_py37 --display-name "mindspore_py37"

运行 jupyter lab

conda activate base
jupyter lab

在这里插入图片描述
讲 kernel 切换成 mindspore_py37 就可以在 Notebook 下使用 mindspore 进行脚本运行了

参考:

  • https://blog.csdn.net/wm9028/article/details/110268030
  • https://gitee.com/mindspore/docs/blob/master/install/mindspore_gpu_install_pip.md#%E5%AE%89%E8%A3%85cuda
  • https://blog.csdn.net/weixin_37926734/article/details/123033286
  • https://zhuanlan.zhihu.com/p/370024835

相关文章:

【mindspore学习】环境配置

本次实验搭配的环境是 CUDA 11.6 CUDNN v8.9.4 TensorRT-8.4.1.5 mindspore 2.1.0。 1、配置 Nvidia 显卡驱动 如果原来的主机已经安装了 nvidia 驱动,为避免版本的冲突,建议先清除掉旧的 nvidia驱动 sudo apt-get --purge remove nvidia* sudo apt…...

基于shell脚本对aliyun npm仓库(https://packages.aliyun.com)登录认证

文章目录 基于shell脚本对阿里云npm仓库(https://packages.aliyun.com)登录认证食用人群食用方式 基于shell脚本对阿里云npm仓库(https://packages.aliyun.com)登录认证 食用人群 由于一些安全的原因,某些企业可能会…...

K8s Pod 安全认知:从openshift SCC 到 PSP 弃用以及现在的 PSA

写在前面 简单整理,博文内容涉及: PSP 的由来PSA 的发展PSA 使用认知不涉及使用,用于了解 Pod 安全 API 资源理解不足小伙伴帮忙指正对每个人而言,真正的职责只有一个:找到自我。然后在心中坚守其一生,全心全意,永不停息。所有其它的路都是不完整的,是人的逃避方式,是…...

提高企业会计效率,选择Manager for Mac(企业会计软件)

作为一家企业,良好的财务管理是保持业务运转的关键。而选择一款适合自己企业的会计软件,能够帮助提高会计效率、减少错误和节约时间。在众多的选择中,Manager for Mac(企业会计软件)是一款值得考虑的优秀软件。 首先,Manager for…...

软考:中级软件设计师:信息系统的安全属性,对称加密和非对称加密,信息摘要,数字签名技术,数字信封与PGP

软考:中级软件设计师:信息系统的安全属性 提示:系列被面试官问的问题,我自己当时不会,所以下来自己复盘一下,认真学习和总结,以应对未来更多的可能性 关于互联网大厂的笔试面试,都是需要细心准…...

Vue3中reactive响应式失效的问题

情景阐述 弹窗内部有一个挑选框,要通过请求接口获取挑选框下面可供选择的数据。 这是一个很简单的情境,我立刻有了自己的思路。如果实现搜索,数据较少可以直接用elementplus自带的filter。如果数据较多,就需要传val,…...

lamp

LAMP 环境 指的是在 Linux 操作系统中分别安装 Apache 网页服务器、MySQL 数据库服务器和 PHP 开发服务器,以及一些对应的扩展软件。AMP也支持win操作系统 (sccm 域升级版) LAMP架构是目前成熟的企业网站应用模式之一,指的是协同…...

LeetCode 周赛上分之旅 #42 当 LeetCode 考树上倍增,出题的趋势在变化吗

⭐️ 本文已收录到 AndroidFamily,技术和职场问题,请关注公众号 [彭旭锐] 和 BaguTree Pro 知识星球提问。 学习数据结构与算法的关键在于掌握问题背后的算法思维框架,你的思考越抽象,它能覆盖的问题域就越广,理解难度…...

Qt 自定义菜单 托盘菜单

托盘菜单实现:通过QSystemTrayIconQMenuQAction即可完美实现! 实现方式:createActions用于创建菜单、菜单项,translateActions用于设置文本、实现多语化,translateAccount用于设置用户空间配额。 void TrayMenu::createActions(…...

channel并发编程

不要通过共享内存通信,要通过通信共享内存。 channel是golang并发编程中一种重要的数据结构,用于多个goroutine之间进行通信。 我们通常可以把channel想象成一个传送带,将goroutine想象成传送带周边的人,一个传送带的上游放上物品…...

苹果新健康专利:利用 iPhone、Apple Watch 来分析佩戴者的呼吸情况

根据美国商标和专利局(USPTO)公示的清单,苹果获得了一项健康相关的技术专利,可以利用 iPhone、Apple Watch 来分析佩戴者的呼吸系统。 苹果在专利中概述了一种测量用户呼吸功能的系统,通过 iPhone 上的光学感测单元&am…...

数据分析基础-数据可视化02-不同数据类型的可视化概念及原则

将数据空间映射到颜色空间。 数据空间:连续或分类 数据可以被划分为两个主要的数据空间:连续数据和分类数据。这两种数据空间有不同的特点和适用的分析方法。 连续数据(Continuous Data): 连续数据是指可以在某个范…...

QT项目使用Qss的总结

什么是QSS QSS称为Qt Style Sheets也就是Qt样式表,它是Qt提供的一种用来自定义控件外观的机制。QSS大量参考了CSS的内容,只不过QSS的功能比CSS要弱很多,体现在选择器要少,可以使用的QSS属性也要少很多,并且并不是所有…...

suricata初体验+wireshark流量分析

目录 一、suricata介绍 1.下载安装 2.如何使用-攻击模拟 二、wireshark流量分析 1.wireshark过滤器使用 2.wireshark其他使用 一、suricata介绍 1.下载安装 通过官网下载suricata,根据官网步骤进行安装。 官网地址: https://documentation.wazuh.…...

机器学习:异常检测实战

文章目录 Anomaly Detection目录任务介绍数据集方法评估Baseline报告报告评价标准 Anomaly Detection 目录 任务介绍 无监督的异常检测 数据集 方法 autoencode 是否能够还原出原始类型图片,基于重构loss来判断是否正常 重构误差当作异常分数 评估 采用ROC和AUC…...

数据结构1

数据结构是计算机科学中存储和组织数据的一种方式,它定义了数据的表示方式和对数据进行操作的方法,常见的数据结构包括数组、栈、链表、队列、树、图等。 目录 一、常见的数据结构 1.数组 2.栈 3.队列 4.链表 5.树 6.图 一、常见的数据结构 1.数…...

自然语言处理学习笔记(七)————字典树效率改进

目录 1. 首字散列其余二分的字典树 2.双数组字典树 3.AC自动机(多模式匹配) (1)goto表 (2)output表 (3)fail表 4.基于双数组字典树的AC自动机 字典树的数据结构在以上的切分算法中已经很快了&#x…...

forEach和map有什么区别,使用场景?

forEach和map有什么区别,使用场景? 区别什么意思?forEach: 不直接改变原始数组,但可以在回调中更改原始数组。 区别 forEach 和 map 都是数组的常用方法,但它们有不同的目的和用法。下面是它们之间的主要区别以及各自…...

【Spring Boot】SpringBoot完整实现社交网站系统

一个完整的社交网站系统需要涉及到用户登录、发布动态、关注、评论、私信等各方面。这里提供一个简单的实现示例&#xff0c;供参考。 前端代码 前端使用Vue框架&#xff0c;以下是部分代码示例&#xff1a; 登录页&#xff1a; <template><div><input type…...

Modbus转Profinet网关连接三菱变频器博图快速配置

本案例将分享如何使用兴达易控的modbus转profinet网关&#xff08;XD-MDPN100&#xff09;来连接西门子1200系列plc&#xff0c;并实现三菱变频器的485通讯兼容转modbusTCP通信。通过在博图中进行配置&#xff0c;我们可以实现设备之间的连接和通信。 首先&#xff0c;我们需要…...

日语学习-日语知识点小记-构建基础-JLPT-N4阶段(33):にする

日语学习-日语知识点小记-构建基础-JLPT-N4阶段(33):にする 1、前言(1)情况说明(2)工程师的信仰2、知识点(1) にする1,接续:名词+にする2,接续:疑问词+にする3,(A)は(B)にする。(2)復習:(1)复习句子(2)ために & ように(3)そう(4)にする3、…...

Mybatis逆向工程,动态创建实体类、条件扩展类、Mapper接口、Mapper.xml映射文件

今天呢&#xff0c;博主的学习进度也是步入了Java Mybatis 框架&#xff0c;目前正在逐步杨帆旗航。 那么接下来就给大家出一期有关 Mybatis 逆向工程的教学&#xff0c;希望能对大家有所帮助&#xff0c;也特别欢迎大家指点不足之处&#xff0c;小生很乐意接受正确的建议&…...

ETLCloud可能遇到的问题有哪些?常见坑位解析

数据集成平台ETLCloud&#xff0c;主要用于支持数据的抽取&#xff08;Extract&#xff09;、转换&#xff08;Transform&#xff09;和加载&#xff08;Load&#xff09;过程。提供了一个简洁直观的界面&#xff0c;以便用户可以在不同的数据源之间轻松地进行数据迁移和转换。…...

视觉slam十四讲实践部分记录——ch2、ch3

ch2 一、使用g++编译.cpp为可执行文件并运行(P30) g++ helloSLAM.cpp ./a.out运行 二、使用cmake编译 mkdir build cd build cmake .. makeCMakeCache.txt 文件仍然指向旧的目录。这表明在源代码目录中可能还存在旧的 CMakeCache.txt 文件,或者在构建过程中仍然引用了旧的路…...

LRU 缓存机制详解与实现(Java版) + 力扣解决

&#x1f4cc; LRU 缓存机制详解与实现&#xff08;Java版&#xff09; 一、&#x1f4d6; 问题背景 在日常开发中&#xff0c;我们经常会使用 缓存&#xff08;Cache&#xff09; 来提升性能。但由于内存有限&#xff0c;缓存不可能无限增长&#xff0c;于是需要策略决定&am…...

逻辑回归暴力训练预测金融欺诈

简述 「使用逻辑回归暴力预测金融欺诈&#xff0c;并不断增加特征维度持续测试」的做法&#xff0c;体现了一种逐步建模与迭代验证的实验思路&#xff0c;在金融欺诈检测中非常有价值&#xff0c;本文作为一篇回顾性记录了早年间公司给某行做反欺诈预测用到的技术和思路。百度…...

【Post-process】【VBA】ETABS VBA FrameObj.GetNameList and write to EXCEL

ETABS API实战:导出框架元素数据到Excel 在结构工程师的日常工作中,经常需要从ETABS模型中提取框架元素信息进行后续分析。手动复制粘贴不仅耗时,还容易出错。今天我们来用简单的VBA代码实现自动化导出。 🎯 我们要实现什么? 一键点击,就能将ETABS中所有框架元素的基…...

从实验室到产业:IndexTTS 在六大核心场景的落地实践

一、内容创作&#xff1a;重构数字内容生产范式 在短视频创作领域&#xff0c;IndexTTS 的语音克隆技术彻底改变了配音流程。B 站 UP 主通过 5 秒参考音频即可克隆出郭老师音色&#xff0c;生成的 “各位吴彦祖们大家好” 语音相似度达 97%&#xff0c;单条视频播放量突破百万…...

高效的后台管理系统——可进行二次开发

随着互联网技术的迅猛发展&#xff0c;企业的数字化管理变得愈加重要。后台管理系统作为数据存储与业务管理的核心&#xff0c;成为了现代企业不可或缺的一部分。今天我们要介绍的是一款名为 若依后台管理框架 的系统&#xff0c;它不仅支持跨平台应用&#xff0c;还能提供丰富…...

拟合问题处理

在机器学习中&#xff0c;核心任务通常围绕模型训练和性能提升展开&#xff0c;但你提到的 “优化训练数据解决过拟合” 和 “提升泛化性能解决欠拟合” 需要结合更准确的概念进行梳理。以下是对机器学习核心任务的系统复习和修正&#xff1a; 一、机器学习的核心任务框架 机…...