【mindspore学习】环境配置
本次实验搭配的环境是 CUDA 11.6 + CUDNN v8.9.4 + TensorRT-8.4.1.5 + mindspore 2.1.0。
1、配置 Nvidia 显卡驱动
如果原来的主机已经安装了 nvidia 驱动,为避免版本的冲突,建议先清除掉旧的 nvidia驱动
sudo apt-get --purge remove nvidia*
sudo apt autoremove
sudo apt-get --purge remove "*cublas*" "cuda*"
sudo apt-get --purge remove "*nvidia*"
sudo apt-get install linux-headers-$(uname -r)
关闭系统自带驱动nouveau,执行 sudo gedit /etc/modprobe.d/blacklist.conf 在末尾追加
blacklist nouveau
options nouveau modeset=0
sudo update-initramfs -u
安装NVIDIA驱动 下载地址
chmod a+x NVIDIA-Linux-x86_64-535.104.05.run
./NVIDIA-Linux-x86_64-535.104.05.run -no-x-check -no-nouveau-check -no-opengl-files
sudo bash ./NVIDIA-Linux-x86_64-535.104.05.run -no-x-check -no-nouveau-check -no-opengl-files
安装之后先重启主机 (执行 sudo reboot),然后检查驱动(执行nvidia-smi)是否安装成功

出现图示结果代表驱动安装成功
2、安装 CUDA-11.6
## 先安装CUDA前需要先安装相关依赖,执行以下命令
sudo apt-get install linux-headers-$(uname -r)
wget https://developer.download.nvidia.com/compute/cuda/11.6.0/local_installers/cuda_11.6.0_510.39.01_linux.run
sudo sh cuda_11.6.0_510.39.01_linux.run
echo -e "export PATH=/usr/local/cuda-11.6/bin:\$PATH" >> ~/.bashrc
echo -e "export LD_LIBRARY_PATH=/usr/local/cuda-11.6/lib64:\$LD_LIBRARY_PATH" >> ~/.bashrc
source ~/.bashrc
安装之后执行 nvcc --version 命令检查会输出以下提示

3、安装 CUDA-11.6配套的cuDNN v8.9.4
tar -xvf cudnn-linux-x86_64-8.9.4.25_cuda11-archive.tar
sudo cp cudnn-linux-x86_64-8.9.4.25_cuda11-archive/include/cudnn*.h /usr/local/cuda-11.6/include
sudo cp cudnn-linux-x86_64-8.9.4.25_cuda11-archive/lib64/libcudnn* /usr/local/cuda-11.6/lib64
sudo chmod a+r /usr/local/cuda-11.6/include/cudnn*.h /usr/local/cuda-11.6/lib64/libcudnn*
检查 CUDNN 是否安装成功
cat /usr/local/cuda-11.6/include/cudnn_version.h | grep CUDNN_MAJOR -A 2

输出上图结果表示配置成功,这里版本好是8.9.4
4、安装 minconda
下载可以从清华镜像源选择下载
wget https://mirrors.tuna.tsinghua.edu.cn/anaconda/miniconda/Miniconda3-py39_4.9.2-Linux-x86_64.sh
chmod a+x Miniconda3-py39_4.9.2-Linux-x86_64.sh
bash Miniconda3-py39_4.9.2-Linux-x86_64.sh
. ~/miniconda3/etc/profile.d/conda.sh
使用 conda 创建 mindspore 虚拟环境
conda init bash
conda create -n mindspore_py37 python=3.7.5 -y
conda activate mindspore_py37
设置 pip 源,这里可以选择清华源或者华为源,二选一。
python -m pip install --upgrade pip
pip config set global.index-url https://pypi.tuna.tsinghua.edu.cn/simple
pip config set global.index-url https://repo.huaweicloud.com/repository/pypi/simple
5、安装 TensorRT-8.4.1.5 下载地址
tar -xvf TensorRT-8.4.1.5.Linux.x86_64-gnu.cuda-11.6.cudnn8.4.tar.gz
cd TensorRT-8.4.1.5/
echo -e "export TENSORRT_HOME=$PWD" >> ~/.bashrc
echo -e "export LD_LIBRARY_PATH=\$TENSORRT_HOME/lib:\$LD_LIBRARY_PATH" >> ~/.bashrc
source ~/.bashrc
通过 .whl 包安装 python 版本 tensorrt
cd $TENSORRT_HOME/python
pip install tensorrt-8.4.1.5-cp37-none-linux_x86_64.whl
执行测试
python -c "import tensorrt;print(tensorrt.__version__)"

6、安装 mindspore 2.1.0
export MS_VERSION=2.1.0
conda activate mindspore_py37
pip install https://ms-release.obs.cn-north-4.myhuaweicloud.com/${MS_VERSION}/MindSpore/unified/x86_64/mindspore-${MS_VERSION/-/}-cp37-cp37m-linux_x86_64.whl --trusted-host ms-release.obs.cn-north-4.myhuaweicloud.com -i https://pypi.tuna.tsinghua.edu.cn/simple
mindspore GPU 检查
python -c "import mindspore;mindspore.set_context(device_target='GPU');mindspore.run_check()"

7、 jupyter lab mindspore 环境管理
在 base 环境下安装 Jupyter Lab
conda activate base
conda install jupyter ipykernel
在 mindspore_py37 中安装 ipykernel
conda activate mindspore_py37
conda install ipykernel
将conda环境写入jupyter的kernel中
–name 环境名称
–display-name 在jupyter notebook看到的别名
python -m ipykernel install --user --name mindspore_py37 --display-name "mindspore_py37"
运行 jupyter lab
conda activate base
jupyter lab

讲 kernel 切换成 mindspore_py37 就可以在 Notebook 下使用 mindspore 进行脚本运行了
参考:
- https://blog.csdn.net/wm9028/article/details/110268030
- https://gitee.com/mindspore/docs/blob/master/install/mindspore_gpu_install_pip.md#%E5%AE%89%E8%A3%85cuda
- https://blog.csdn.net/weixin_37926734/article/details/123033286
- https://zhuanlan.zhihu.com/p/370024835
相关文章:
【mindspore学习】环境配置
本次实验搭配的环境是 CUDA 11.6 CUDNN v8.9.4 TensorRT-8.4.1.5 mindspore 2.1.0。 1、配置 Nvidia 显卡驱动 如果原来的主机已经安装了 nvidia 驱动,为避免版本的冲突,建议先清除掉旧的 nvidia驱动 sudo apt-get --purge remove nvidia* sudo apt…...
基于shell脚本对aliyun npm仓库(https://packages.aliyun.com)登录认证
文章目录 基于shell脚本对阿里云npm仓库(https://packages.aliyun.com)登录认证食用人群食用方式 基于shell脚本对阿里云npm仓库(https://packages.aliyun.com)登录认证 食用人群 由于一些安全的原因,某些企业可能会…...
K8s Pod 安全认知:从openshift SCC 到 PSP 弃用以及现在的 PSA
写在前面 简单整理,博文内容涉及: PSP 的由来PSA 的发展PSA 使用认知不涉及使用,用于了解 Pod 安全 API 资源理解不足小伙伴帮忙指正对每个人而言,真正的职责只有一个:找到自我。然后在心中坚守其一生,全心全意,永不停息。所有其它的路都是不完整的,是人的逃避方式,是…...
提高企业会计效率,选择Manager for Mac(企业会计软件)
作为一家企业,良好的财务管理是保持业务运转的关键。而选择一款适合自己企业的会计软件,能够帮助提高会计效率、减少错误和节约时间。在众多的选择中,Manager for Mac(企业会计软件)是一款值得考虑的优秀软件。 首先,Manager for…...
软考:中级软件设计师:信息系统的安全属性,对称加密和非对称加密,信息摘要,数字签名技术,数字信封与PGP
软考:中级软件设计师:信息系统的安全属性 提示:系列被面试官问的问题,我自己当时不会,所以下来自己复盘一下,认真学习和总结,以应对未来更多的可能性 关于互联网大厂的笔试面试,都是需要细心准…...
Vue3中reactive响应式失效的问题
情景阐述 弹窗内部有一个挑选框,要通过请求接口获取挑选框下面可供选择的数据。 这是一个很简单的情境,我立刻有了自己的思路。如果实现搜索,数据较少可以直接用elementplus自带的filter。如果数据较多,就需要传val,…...
lamp
LAMP 环境 指的是在 Linux 操作系统中分别安装 Apache 网页服务器、MySQL 数据库服务器和 PHP 开发服务器,以及一些对应的扩展软件。AMP也支持win操作系统 (sccm 域升级版) LAMP架构是目前成熟的企业网站应用模式之一,指的是协同…...
LeetCode 周赛上分之旅 #42 当 LeetCode 考树上倍增,出题的趋势在变化吗
⭐️ 本文已收录到 AndroidFamily,技术和职场问题,请关注公众号 [彭旭锐] 和 BaguTree Pro 知识星球提问。 学习数据结构与算法的关键在于掌握问题背后的算法思维框架,你的思考越抽象,它能覆盖的问题域就越广,理解难度…...
Qt 自定义菜单 托盘菜单
托盘菜单实现:通过QSystemTrayIconQMenuQAction即可完美实现! 实现方式:createActions用于创建菜单、菜单项,translateActions用于设置文本、实现多语化,translateAccount用于设置用户空间配额。 void TrayMenu::createActions(…...
channel并发编程
不要通过共享内存通信,要通过通信共享内存。 channel是golang并发编程中一种重要的数据结构,用于多个goroutine之间进行通信。 我们通常可以把channel想象成一个传送带,将goroutine想象成传送带周边的人,一个传送带的上游放上物品…...
苹果新健康专利:利用 iPhone、Apple Watch 来分析佩戴者的呼吸情况
根据美国商标和专利局(USPTO)公示的清单,苹果获得了一项健康相关的技术专利,可以利用 iPhone、Apple Watch 来分析佩戴者的呼吸系统。 苹果在专利中概述了一种测量用户呼吸功能的系统,通过 iPhone 上的光学感测单元&am…...
数据分析基础-数据可视化02-不同数据类型的可视化概念及原则
将数据空间映射到颜色空间。 数据空间:连续或分类 数据可以被划分为两个主要的数据空间:连续数据和分类数据。这两种数据空间有不同的特点和适用的分析方法。 连续数据(Continuous Data): 连续数据是指可以在某个范…...
QT项目使用Qss的总结
什么是QSS QSS称为Qt Style Sheets也就是Qt样式表,它是Qt提供的一种用来自定义控件外观的机制。QSS大量参考了CSS的内容,只不过QSS的功能比CSS要弱很多,体现在选择器要少,可以使用的QSS属性也要少很多,并且并不是所有…...
suricata初体验+wireshark流量分析
目录 一、suricata介绍 1.下载安装 2.如何使用-攻击模拟 二、wireshark流量分析 1.wireshark过滤器使用 2.wireshark其他使用 一、suricata介绍 1.下载安装 通过官网下载suricata,根据官网步骤进行安装。 官网地址: https://documentation.wazuh.…...
机器学习:异常检测实战
文章目录 Anomaly Detection目录任务介绍数据集方法评估Baseline报告报告评价标准 Anomaly Detection 目录 任务介绍 无监督的异常检测 数据集 方法 autoencode 是否能够还原出原始类型图片,基于重构loss来判断是否正常 重构误差当作异常分数 评估 采用ROC和AUC…...
数据结构1
数据结构是计算机科学中存储和组织数据的一种方式,它定义了数据的表示方式和对数据进行操作的方法,常见的数据结构包括数组、栈、链表、队列、树、图等。 目录 一、常见的数据结构 1.数组 2.栈 3.队列 4.链表 5.树 6.图 一、常见的数据结构 1.数…...
自然语言处理学习笔记(七)————字典树效率改进
目录 1. 首字散列其余二分的字典树 2.双数组字典树 3.AC自动机(多模式匹配) (1)goto表 (2)output表 (3)fail表 4.基于双数组字典树的AC自动机 字典树的数据结构在以上的切分算法中已经很快了&#x…...
forEach和map有什么区别,使用场景?
forEach和map有什么区别,使用场景? 区别什么意思?forEach: 不直接改变原始数组,但可以在回调中更改原始数组。 区别 forEach 和 map 都是数组的常用方法,但它们有不同的目的和用法。下面是它们之间的主要区别以及各自…...
【Spring Boot】SpringBoot完整实现社交网站系统
一个完整的社交网站系统需要涉及到用户登录、发布动态、关注、评论、私信等各方面。这里提供一个简单的实现示例,供参考。 前端代码 前端使用Vue框架,以下是部分代码示例: 登录页: <template><div><input type…...
Modbus转Profinet网关连接三菱变频器博图快速配置
本案例将分享如何使用兴达易控的modbus转profinet网关(XD-MDPN100)来连接西门子1200系列plc,并实现三菱变频器的485通讯兼容转modbusTCP通信。通过在博图中进行配置,我们可以实现设备之间的连接和通信。 首先,我们需要…...
大数据学习栈记——Neo4j的安装与使用
本文介绍图数据库Neofj的安装与使用,操作系统:Ubuntu24.04,Neofj版本:2025.04.0。 Apt安装 Neofj可以进行官网安装:Neo4j Deployment Center - Graph Database & Analytics 我这里安装是添加软件源的方法 最新版…...
【决胜公务员考试】求职OMG——见面课测验1
2025最新版!!!6.8截至答题,大家注意呀! 博主码字不易点个关注吧,祝期末顺利~~ 1.单选题(2分) 下列说法错误的是:( B ) A.选调生属于公务员系统 B.公务员属于事业编 C.选调生有基层锻炼的要求 D…...
DBAPI如何优雅的获取单条数据
API如何优雅的获取单条数据 案例一 对于查询类API,查询的是单条数据,比如根据主键ID查询用户信息,sql如下: select id, name, age from user where id #{id}API默认返回的数据格式是多条的,如下: {&qu…...
鸿蒙中用HarmonyOS SDK应用服务 HarmonyOS5开发一个生活电费的缴纳和查询小程序
一、项目初始化与配置 1. 创建项目 ohpm init harmony/utility-payment-app 2. 配置权限 // module.json5 {"requestPermissions": [{"name": "ohos.permission.INTERNET"},{"name": "ohos.permission.GET_NETWORK_INFO"…...
工业自动化时代的精准装配革新:迁移科技3D视觉系统如何重塑机器人定位装配
AI3D视觉的工业赋能者 迁移科技成立于2017年,作为行业领先的3D工业相机及视觉系统供应商,累计完成数亿元融资。其核心技术覆盖硬件设计、算法优化及软件集成,通过稳定、易用、高回报的AI3D视觉系统,为汽车、新能源、金属制造等行…...
【论文阅读28】-CNN-BiLSTM-Attention-(2024)
本文把滑坡位移序列拆开、筛优质因子,再用 CNN-BiLSTM-Attention 来动态预测每个子序列,最后重构出总位移,预测效果超越传统模型。 文章目录 1 引言2 方法2.1 位移时间序列加性模型2.2 变分模态分解 (VMD) 具体步骤2.3.1 样本熵(S…...
Go 并发编程基础:通道(Channel)的使用
在 Go 中,Channel 是 Goroutine 之间通信的核心机制。它提供了一个线程安全的通信方式,用于在多个 Goroutine 之间传递数据,从而实现高效的并发编程。 本章将介绍 Channel 的基本概念、用法、缓冲、关闭机制以及 select 的使用。 一、Channel…...
MySQL 8.0 事务全面讲解
以下是一个结合两次回答的 MySQL 8.0 事务全面讲解,涵盖了事务的核心概念、操作示例、失败回滚、隔离级别、事务性 DDL 和 XA 事务等内容,并修正了查看隔离级别的命令。 MySQL 8.0 事务全面讲解 一、事务的核心概念(ACID) 事务是…...
day36-多路IO复用
一、基本概念 (服务器多客户端模型) 定义:单线程或单进程同时监测若干个文件描述符是否可以执行IO操作的能力 作用:应用程序通常需要处理来自多条事件流中的事件,比如我现在用的电脑,需要同时处理键盘鼠标…...
毫米波雷达基础理论(3D+4D)
3D、4D毫米波雷达基础知识及厂商选型 PreView : https://mp.weixin.qq.com/s/bQkju4r6med7I3TBGJI_bQ 1. FMCW毫米波雷达基础知识 主要参考博文: 一文入门汽车毫米波雷达基本原理 :https://mp.weixin.qq.com/s/_EN7A5lKcz2Eh8dLnjE19w 毫米波雷达基础…...
