当前位置: 首页 > news >正文

分布式训练 最小化部署docker swarm + docker-compose落地方案

目录

背景:

前提条件:

一、docker环境初始化配置

1. 安装nvidia-docker2

2. 安装docker-compose工具 

3. 获取GPU UUID

4. 修改docker runtime为nvidia,指定机器的UUID

二、docker-swarm 环境安装

1. 初始化swarm管理节点

2. 加入工作节点

3. 查看集群节点

三、拷贝基础镜像及部署文件 

1. Docker 镜像

2. docker-compose.yml

四、部署应用 

1. 部署服务

2. ssh免密验证


背景:

实现不同宿主机上的容器可以互通,并且可以免密ssh登陆

前提条件:

机器具备docker、NVIDIA显卡、NVIDIA驱动等相关安装包和硬件设施,nvidia-smi 可以正常显示出机器的GPU显卡

Docker 版本必须 > 1.12

一、docker环境初始化配置

1. 安装nvidia-docker2

# 执行如下命令
apt install nvidia-docker2 -y

2. 安装docker-compose工具 

将安装包拷贝到环境,只需要在docker swarm leader节点安装

# 下载docker-compose
sudo curl -L "https://github.com/docker/compose/releases/download/1.29.2/docker-compose-$(uname -s)-$(uname -m)" -o /usr/local/bin/docker-composemv docker-compose-linux-x86_64 docker-compose 
chmod +x docker-compose 
mv docker-compose /usr/bin/docker-compose

3. 获取GPU UUID

nvidia-smi -a  | grep UUID

4. 修改docker runtime为nvidia,指定机器的UUID

修改文件成如下内容,注意其中的GPU UUID需要根据实际的uuid来填写,同时注意格式。

(base) root@nm-zhipu-a100-develop01:~# cat /etc/docker/daemon.json                                                                                                                      
{                                                                                                                                                                                       "runtimes": {                                                                                                                                                                       "nvidia": {                                                                                                                                                                     "path": "nvidia-container-runtime",                                                                                                                                         "runtimeArgs": []                                                                                                                                                           }                                                                                                                                                                               },                                                                                                                                                                                  "default-runtime": "nvidia",                                                                                                                                                        "node-generic-resources": [                                                                                                                                                         "NVIDIA-GPU=GPU-528afedf-02cf-7380-e22b-e2c05c1be4ec",                                                                                                                              "NVIDIA-GPU=GPU-5c46d5eb-0996-a5ac-cb7a-29f274d046a4",                                                                                                                              "NVIDIA-GPU=GPU-f57f6d1b-ea13-1480-6321-7a26181b838d",                                                                                                                              "NVIDIA-GPU=GPU-75acc759-bb26-da0b-21c5-a31dca12e93f",                                                                                                                              "NVIDIA-GPU=GPU-7e4da326-2d9e-3530-9f46-673474746e0b",                                                                                                                              "NVIDIA-GPU=GPU-76f183b8-b750-73bc-b438-404a16ae7b78",                                                                                                                              "NVIDIA-GPU=GPU-34823444-9a29-0776-f483-c802c6057039",                                                                                                                              "NVIDIA-GPU=GPU-a474810c-7356-b242-d0d8-5e83714655de"                                                                                                                               ],                                                                                                                                                                                  "default-shm-size": "10G"                                                                                                                                                                                    
}       
# 将如下文件中的swarm-resource 这行注释打开
/etc/nvidia-container-runtime/config.toml 
swarm-resource = "DOCKER_RESOURCE_GPU"
# 重启docker
systemctl  restart docker 

二、docker-swarm 环境安装

1. 初始化swarm管理节点

# docker swarm leader角色执行 
# 初始化一个新的swarm,并且当前的机器变为swarm manager,执行命令后会返回join相关的指令
docker swarm init --advertise-addr 192.168.249.11   #根据实际机器IP填写

类似下图的一条的命令 

2. 加入工作节点

# worker节点执行,如果有多个worker节点则都需要执行
docker swarm join --token SWMTKN-1-51nvltfqyxlfo0m5f5unzufhs03gmtcs8uoues6zgln0vzhy2c-5agl9x8f9nwrwagy7ud8k6oti 192.168.249.11:2377                                                 

3. 查看集群节点

# 查看swarm节点信息
docker node ls

三、拷贝基础镜像及部署文件 

1. Docker 镜像

如果要在客户方build,需要拷贝Dockerfile文件,并且保证客户环境可以下载依赖的基础镜像和相关的依赖包

Dockerfile

FROM nvcr.io/nvidia/pytorch:23.07-py3                                                                                                                                                   # ADD /data0/nfs/share/pangguoqing/glm66b/data/ /workspace/data                                                                                                                         
COPY . /workspace                                                                                                                                                                       
COPY ssh /root/.ssh/                                                                                                                                                                    RUN apt-get update && apt-get install -y --no-install-recommends ssh && \                                                                                                               apt-get install -y net-tools && \                                                                                                                                                   wget https://storage.googleapis.com/google-code-archive-downloads/v2/code.google.com/pdsh/pdsh-2.29.tar.bz2 && \                                                                    tar jxvf pdsh-2.29.tar.bz2 && \                                                                                                                                                     cd pdsh-2.29 && \                                                                                                                                                                   ./configure --with-ssh --with-rsh --with-mrsh--with-mqshell --with-qshell --with-dshgroups--with-machines=/etc/pdsh/machines --without-pam && \                                     make && \                                                                                                                                                                           make install                                                                                                                                                                        RUN pip config set global.index-url https://pypi.tuna.tsinghua.edu.cn/simple && \                                                                                                       pip install deepspeed && \                                                                                                                                                          pip install sentencepiece                                                                                                                                                           EXPOSE 22                                                                                                                                                                               
ENV CUDA_DEVICE_MAX_CONNECTIONS="1"                                                                                                                                                     
WORKDIR /workspace                                                                                                                                                                      
ENTRYPOINT service ssh restart && bash   

2. docker-compose.yml

  • 如果有多个worker节点,则需要在文件中增加对应的配置,从0开始往下顺延

  • 挂载点修改

version: '3.7'                                                                                                                                                                          services:                                                                                                                                                                               main:                                                                                                                                                                                 image: wind/glm66b-train:base-v2                                                                                                                                                    hostname: main                                                                                                                                                                      init: true                                                                                                                                                                          tty: true                                                                                                                                                                           deploy:                                                                                                                                                                             replicas: 1 # 定 义 在  Swarm 中 运 行 的 副 本 数                                                                                                                                          restart_policy:                                                                                                                                                                   condition: on-failure                                                                                                                                                           environment:                                                                                                                                                                        - NVIDIA_VISIBLE_DEVICES=all                                                                                                                                                      volumes:                                                                                                                                                                            - /data0/nfs/share/pangguoqing/glm66b/data/:/workspace/data/                                                                                                                      networks:                                                                                                                                                                           - my_overlay_network                                                                                                                                                              worker01:                                                                                                                                                                             image: wind/glm66b-train:base-v2                                                                                                                                                    hostname: worker-0                                                                                                                                                                  init: true                                                                                                                                                                          tty: true                                                                                                                                                                           deploy:                                                                                                                                                                             replicas: 1                                                                                                                                                                       restart_policy:                                                                                                                                                                   condition: on-failure                                                                                                                                                           environment:                                                                                                                                                                        - NVIDIA_VISIBLE_DEVICES=all                                                                                                                                                      volumes:                                                                                                                                                                            - /data0/nfs/share/pangguoqing/glm66b/data/:/workspace/data/                                                                                                                      networks:                                                                                                                                                                           - my_overlay_network                                                                                                                                                              networks:                                                                                                                                                                               my_overlay_network:                                                                                                                                                                   driver: overlay               

四、部署应用 

1. 部署服务

# 部署
docker stack deploy -c docker-compose.yml wande。#根据实际名称修改
# 显示部署的服务
docker stack services wande

# 查看服务容器状态
docker stack ps wande 

2. ssh免密验证

登陆任意一个容器,通过ssh root@主机名即可登陆

ssh root@worker01

参考文档:

docker service create | Docker Docs

https://www.reddit.com/r/docker/comments/mh36w1/using_nvidia_gpu_with_docker_swarm_started_by/

相关文章:

分布式训练 最小化部署docker swarm + docker-compose落地方案

目录 背景: 前提条件: 一、docker环境初始化配置 1. 安装nvidia-docker2 2. 安装docker-compose工具 3. 获取GPU UUID 4. 修改docker runtime为nvidia,指定机器的UUID 二、docker-swarm 环境安装 1. 初始化swarm管理节点 2. 加入工…...

QT学习笔记-开发环境编译Qt MySql数据库驱动与交叉编译Qt MySql数据库驱动

QT学习笔记-开发环境编译Qt MySql数据库驱动与交叉编译Qt MySql数据库驱动 0、背景1、基本环境2、开发环境编译Qt MySql数据库驱动2.1 依赖说明2.2 MySQL驱动编译过程 3、交叉编译Qt MySql数据库驱动3.1 依赖说明3.3.1 如何在交叉编译服务器上找到mysql.h及相关头文件3.3.2 如果…...

QT使用QXlsx实现数据验证与Excel公式操作 QT基础入门【Excel的操作】

准备环境:QT中使用QtXlsx库的三种方法 1、公式操作写单行公式 //右值初始化Format rAlign;rAlign.setHorizontalAlignment(Format::AlignRight);//左值初始化Format lAlign;lAlign.setHorizontalAlignment(Format::AlignLeft);xlsx.write("B3", 40, lAlign);xlsx.wr…...

renrenfast Vue2 打包发布

1、修改 static/config/index-prod.js 文件 // api接口请求地址 window.SITE_CONFIG[baseUrl] http://192.168.1.86:8080/renren-fast; /*** 生产环境*/ ;(function () {window.SITE_CONFIG {};// api接口请求地址window.SITE_CONFIG[baseUrl] http://192.16…...

NoSQL数据库介绍+Redis部署

目录 一、NoSQL概述 1、数据的高并发读写 2、海量数据的高效率存储和访问 3、数据库的高扩展和高可用 二、NoSQL的类别 1、键值存储数据库 2、列存储数据库 3、文档型数据库 4、图形化数据库 三、分布式数据库中的CAP原理 1、传统的ACID 1)、A--原子性 …...

【mindspore学习】环境配置

本次实验搭配的环境是 CUDA 11.6 CUDNN v8.9.4 TensorRT-8.4.1.5 mindspore 2.1.0。 1、配置 Nvidia 显卡驱动 如果原来的主机已经安装了 nvidia 驱动,为避免版本的冲突,建议先清除掉旧的 nvidia驱动 sudo apt-get --purge remove nvidia* sudo apt…...

基于shell脚本对aliyun npm仓库(https://packages.aliyun.com)登录认证

文章目录 基于shell脚本对阿里云npm仓库(https://packages.aliyun.com)登录认证食用人群食用方式 基于shell脚本对阿里云npm仓库(https://packages.aliyun.com)登录认证 食用人群 由于一些安全的原因,某些企业可能会…...

K8s Pod 安全认知:从openshift SCC 到 PSP 弃用以及现在的 PSA

写在前面 简单整理,博文内容涉及: PSP 的由来PSA 的发展PSA 使用认知不涉及使用,用于了解 Pod 安全 API 资源理解不足小伙伴帮忙指正对每个人而言,真正的职责只有一个:找到自我。然后在心中坚守其一生,全心全意,永不停息。所有其它的路都是不完整的,是人的逃避方式,是…...

提高企业会计效率,选择Manager for Mac(企业会计软件)

作为一家企业,良好的财务管理是保持业务运转的关键。而选择一款适合自己企业的会计软件,能够帮助提高会计效率、减少错误和节约时间。在众多的选择中,Manager for Mac(企业会计软件)是一款值得考虑的优秀软件。 首先,Manager for…...

软考:中级软件设计师:信息系统的安全属性,对称加密和非对称加密,信息摘要,数字签名技术,数字信封与PGP

软考:中级软件设计师:信息系统的安全属性 提示:系列被面试官问的问题,我自己当时不会,所以下来自己复盘一下,认真学习和总结,以应对未来更多的可能性 关于互联网大厂的笔试面试,都是需要细心准…...

Vue3中reactive响应式失效的问题

情景阐述 弹窗内部有一个挑选框,要通过请求接口获取挑选框下面可供选择的数据。 这是一个很简单的情境,我立刻有了自己的思路。如果实现搜索,数据较少可以直接用elementplus自带的filter。如果数据较多,就需要传val,…...

lamp

LAMP 环境 指的是在 Linux 操作系统中分别安装 Apache 网页服务器、MySQL 数据库服务器和 PHP 开发服务器,以及一些对应的扩展软件。AMP也支持win操作系统 (sccm 域升级版) LAMP架构是目前成熟的企业网站应用模式之一,指的是协同…...

LeetCode 周赛上分之旅 #42 当 LeetCode 考树上倍增,出题的趋势在变化吗

⭐️ 本文已收录到 AndroidFamily,技术和职场问题,请关注公众号 [彭旭锐] 和 BaguTree Pro 知识星球提问。 学习数据结构与算法的关键在于掌握问题背后的算法思维框架,你的思考越抽象,它能覆盖的问题域就越广,理解难度…...

Qt 自定义菜单 托盘菜单

托盘菜单实现:通过QSystemTrayIconQMenuQAction即可完美实现! 实现方式:createActions用于创建菜单、菜单项,translateActions用于设置文本、实现多语化,translateAccount用于设置用户空间配额。 void TrayMenu::createActions(…...

channel并发编程

不要通过共享内存通信,要通过通信共享内存。 channel是golang并发编程中一种重要的数据结构,用于多个goroutine之间进行通信。 我们通常可以把channel想象成一个传送带,将goroutine想象成传送带周边的人,一个传送带的上游放上物品…...

苹果新健康专利:利用 iPhone、Apple Watch 来分析佩戴者的呼吸情况

根据美国商标和专利局(USPTO)公示的清单,苹果获得了一项健康相关的技术专利,可以利用 iPhone、Apple Watch 来分析佩戴者的呼吸系统。 苹果在专利中概述了一种测量用户呼吸功能的系统,通过 iPhone 上的光学感测单元&am…...

数据分析基础-数据可视化02-不同数据类型的可视化概念及原则

将数据空间映射到颜色空间。 数据空间:连续或分类 数据可以被划分为两个主要的数据空间:连续数据和分类数据。这两种数据空间有不同的特点和适用的分析方法。 连续数据(Continuous Data): 连续数据是指可以在某个范…...

QT项目使用Qss的总结

什么是QSS QSS称为Qt Style Sheets也就是Qt样式表,它是Qt提供的一种用来自定义控件外观的机制。QSS大量参考了CSS的内容,只不过QSS的功能比CSS要弱很多,体现在选择器要少,可以使用的QSS属性也要少很多,并且并不是所有…...

suricata初体验+wireshark流量分析

目录 一、suricata介绍 1.下载安装 2.如何使用-攻击模拟 二、wireshark流量分析 1.wireshark过滤器使用 2.wireshark其他使用 一、suricata介绍 1.下载安装 通过官网下载suricata,根据官网步骤进行安装。 官网地址: https://documentation.wazuh.…...

机器学习:异常检测实战

文章目录 Anomaly Detection目录任务介绍数据集方法评估Baseline报告报告评价标准 Anomaly Detection 目录 任务介绍 无监督的异常检测 数据集 方法 autoencode 是否能够还原出原始类型图片,基于重构loss来判断是否正常 重构误差当作异常分数 评估 采用ROC和AUC…...

接口测试中缓存处理策略

在接口测试中,缓存处理策略是一个关键环节,直接影响测试结果的准确性和可靠性。合理的缓存处理策略能够确保测试环境的一致性,避免因缓存数据导致的测试偏差。以下是接口测试中常见的缓存处理策略及其详细说明: 一、缓存处理的核…...

vscode(仍待补充)

写于2025 6.9 主包将加入vscode这个更权威的圈子 vscode的基本使用 侧边栏 vscode还能连接ssh? debug时使用的launch文件 1.task.json {"tasks": [{"type": "cppbuild","label": "C/C: gcc.exe 生成活动文件"…...

大数据零基础学习day1之环境准备和大数据初步理解

学习大数据会使用到多台Linux服务器。 一、环境准备 1、VMware 基于VMware构建Linux虚拟机 是大数据从业者或者IT从业者的必备技能之一也是成本低廉的方案 所以VMware虚拟机方案是必须要学习的。 (1)设置网关 打开VMware虚拟机,点击编辑…...

在四层代理中还原真实客户端ngx_stream_realip_module

一、模块原理与价值 PROXY Protocol 回溯 第三方负载均衡(如 HAProxy、AWS NLB、阿里 SLB)发起上游连接时,将真实客户端 IP/Port 写入 PROXY Protocol v1/v2 头。Stream 层接收到头部后,ngx_stream_realip_module 从中提取原始信息…...

现代密码学 | 椭圆曲线密码学—附py代码

Elliptic Curve Cryptography 椭圆曲线密码学(ECC)是一种基于有限域上椭圆曲线数学特性的公钥加密技术。其核心原理涉及椭圆曲线的代数性质、离散对数问题以及有限域上的运算。 椭圆曲线密码学是多种数字签名算法的基础,例如椭圆曲线数字签…...

EtherNet/IP转DeviceNet协议网关详解

一,设备主要功能 疆鸿智能JH-DVN-EIP本产品是自主研发的一款EtherNet/IP从站功能的通讯网关。该产品主要功能是连接DeviceNet总线和EtherNet/IP网络,本网关连接到EtherNet/IP总线中做为从站使用,连接到DeviceNet总线中做为从站使用。 在自动…...

Device Mapper 机制

Device Mapper 机制详解 Device Mapper(简称 DM)是 Linux 内核中的一套通用块设备映射框架,为 LVM、加密磁盘、RAID 等提供底层支持。本文将详细介绍 Device Mapper 的原理、实现、内核配置、常用工具、操作测试流程,并配以详细的…...

保姆级教程:在无网络无显卡的Windows电脑的vscode本地部署deepseek

文章目录 1 前言2 部署流程2.1 准备工作2.2 Ollama2.2.1 使用有网络的电脑下载Ollama2.2.2 安装Ollama(有网络的电脑)2.2.3 安装Ollama(无网络的电脑)2.2.4 安装验证2.2.5 修改大模型安装位置2.2.6 下载Deepseek模型 2.3 将deepse…...

鸿蒙HarmonyOS 5军旗小游戏实现指南

1. 项目概述 本军旗小游戏基于鸿蒙HarmonyOS 5开发,采用DevEco Studio实现,包含完整的游戏逻辑和UI界面。 2. 项目结构 /src/main/java/com/example/militarychess/├── MainAbilitySlice.java // 主界面├── GameView.java // 游戏核…...

leetcode73-矩阵置零

leetcode 73 思路 记录 0 元素的位置:遍历整个矩阵,找出所有值为 0 的元素,并将它们的坐标记录在数组zeroPosition中置零操作:遍历记录的所有 0 元素位置,将每个位置对应的行和列的所有元素置为 0 具体步骤 初始化…...