计算机视觉 – Computer Vision | CV
计算机视觉为什么重要?
人的大脑皮层, 有差不多 70% 都是在处理视觉信息。 是人类获取信息最主要的渠道,没有之一。
在网络世界,照片和视频(图像的集合)也正在发生爆炸式的增长!
下图是网络上新增数据的占比趋势图。灰色是结构化数据,蓝色是非结构化数据(大部分都是图像和视频)。可以很明显的发现,图片和视频正在以指数级的速度在增长。
而在计算机视觉出现之前,图像对于计算机来说是黑盒的状态。
一张图片对于机器只是一个文件。机器并不知道图片里的内容到底是什么,只知道这张图片是什么尺寸,多少MB,什么格式的。
如果计算机、人工智能想要在现实世界发挥重要作用,就必须看懂图片!这就是计算机视觉要解决的问题。
什么是计算机视觉 – CV?
计算机视觉是人工智能的一个重要分支,它要解决的问题就是:看懂图像里的内容。
比如:
- 图片里的宠物是猫还是狗?
- 图片里的人是老张还是老王?
- 这张照片里,桌子上放了哪些物品?
计算机视觉的原理是什么?
目前主流的基于深度学习的机器视觉方法,其原理跟人类大脑工作的原理比较相似。
人类的视觉原理如下:从原始信号摄入开始(瞳孔摄入像素 Pixels),接着做初步处理(大脑皮层某些细胞发现边缘和方向),然后抽象(大脑判定,眼前的物体的形状,是圆形的),然后进一步抽象(大脑进一步判定该物体是只气球)。
机器的方法也是类似:构造多层的神经网络,较低层的识别初级的图像特征,若干底层特征组成更上一层特征,最终通过多个层级的组合,最终在顶层做出分类。
计算机视觉的2大挑战
对于人类来说看懂图片是一件很简单的事情,但是对于机器来说这是一个非常难的事情,说 2 个典型的难点:
特征难以提取
同一只猫在不同的角度,不同的光线,不同的动作下。像素差异是非常大的。就算是同一张照片,旋转90度后,其像素差异也非常大!
所以图片里的内容相似甚至相同,但是在像素层面,其变化会非常大。这对于特征提取是一大挑战。
需要计算的数据量巨大
手机上随便拍一张照片就是1000*2000像素的。每个像素 RGB 3个参数,一共有1000 X 2000 X 3=6,000,000。随便一张照片就要处理 600万 个参数,再算算现在越来越流行的 4K 视频。就知道这个计算量级有多恐怖了。
CNN 解决了上面的两大难题
CNN 属于深度学习的范畴,它很好的解决了上面所说的2大难点:
- CNN 可以有效的提取图像里的特征
- CNN 可以将海量的数据(不影响特征提取的前提下)进行有效的降维,大大减少了对算力的要求
计算机视觉的 8 大任务
图像分类
图像分类是计算机视觉中重要的基础问题。后面提到的其他任务也是以它为基础的。
举几个典型的例子:人脸识别、图片鉴黄、相册根据人物自动分类等。
目标检测
目标检测任务的目标是给定一张图像或是一个视频帧,让计算机找出其中所有目标的位置,并给出每个目标的具体类别。
语义分割
它将整个图像分成像素组,然后对像素组进行标记和分类。语义分割试图在语义上理解图像中每个像素是什么(人、车、狗、树…)。
如下图,除了识别人、道路、汽车、树木等之外,我们还必须确定每个物体的边界。
实例分割
除了语义分割之外,实例分割将不同类型的实例进行分类,比如用 5 种不同颜色来标记 5 辆汽车。我们会看到多个重叠物体和不同背景的复杂景象,我们不仅需要将这些不同的对象进行分类,而且还要确定对象的边界、差异和彼此之间的关系!
视频分类
与图像分类不同的是,分类的对象不再是静止的图像,而是一个由多帧图像构成的、包含语音数据、包含运动信息等的视频对象,因此理解视频需要获得更多的上下文信息,不仅要理解每帧图像是什么、包含什么,还需要结合不同帧,知道上下文的关联信息。
人体关键点检测
体关键点检测,通过人体关键节点的组合和追踪来识别人的运动和行为,对于描述人体姿态,预测人体行为至关重要。
在 Xbox 中就有利用到这个技术。
场景文字识别
很多照片中都有一些文字信息,这对理解图像有重要的作用。
场景文字识别是在图像背景复杂、分辨率低下、字体多样、分布随意等情况下,将图像信息转化为文字序列的过程。
停车场、收费站的车牌识别就是典型的应用场景。
目标跟踪
目标跟踪,是指在特定场景跟踪某一个或多个特定感兴趣对象的过程。传统的应用就是视频和真实世界的交互,在检测到初始对象之后进行观察。
无人驾驶里就会用到这个技术。
CV 在日常生活中的应用场景
计算机视觉的应用场景非常广泛,下面列举几个生活中常见的应用场景。
- 门禁、支付宝上的人脸识别
- 停车场、收费站的车牌识别
- 上传图片或视频到网站时的风险识别
- 抖音上的各种道具(需要先识别出人脸的位置)
这里需要说明一下,条形码和二维码的扫描不算是计算机视觉。
这种对图像的识别,还是基于固定规则的,并不需要处理复杂的图像,完全用不到 AI 技术。
计算机视觉
是一门研究如何使机器“看”的科学,更进一步的说,就是是指用摄影机和电脑代替人眼对目标进行识别、跟踪和测量等机器视觉,并进一步做图形处理,使电脑处理成为更适合人眼观察或传送给仪器检测的图像。作为一个科学学科,计算机视觉研究相关的理论和技术,试图建立能够从图像或者多维数据中获取‘信息’的人工智能系统。这里所 指的信息指Shannon定义的,可以用来帮助做一个“决定”的信息。因为感知可以看作是从感官信号中提 取信息,所以计算机视觉也可以看作是研究如何使人工系统从图像或多维数据中“感知”的科学。
计算机视觉是一个跨学科的科学领域,涉及如何制作计算机以从数字图像或视频中获得高层次的理解。从工程的角度来看,它寻求自动化人类视觉系统可以完成的任务。
计算机视觉任务包括用于获取,处理,分析和理解数字图像的方法,以及从现实世界中提取高维数据以便例如以决策的形式产生数字或符号信息。
在这种情况下理解意味着将视觉图像(视网膜的输入)转换为可以与其他思维过程交互并引出适当行动的世界描述。这种图像理解可以看作是利用几何学,物理学,统计学和学习理论构建的模型从图像数据中解开符号信息。
作为一门科学学科,计算机视觉关注从图像中提取信息的人工系统背后的理论。图像数据可以采用多种形式,例如视频序列,来自多个相机的视图或来自医学扫描仪的多维数据。作为一门技术学科,计算机视觉试图将其理论和模型应用于计算机视觉系统的构建。 计算机视觉的子域包括场景重建,事件检测,视频跟踪,对象识别,3D姿态估计,学习,索引,运动估计和图像恢复。
相关文章:

计算机视觉 – Computer Vision | CV
计算机视觉为什么重要? 人的大脑皮层, 有差不多 70% 都是在处理视觉信息。 是人类获取信息最主要的渠道,没有之一。 在网络世界,照片和视频(图像的集合)也正在发生爆炸式的增长! 下图是网络上…...

2.Redis 通用命令
Redis 中最核心的两个命令: set 作用:设置 key 对应的 value 值并存储进去。若key已包含一个值,则无论其类型如何,都会覆盖该值。在SET操作成功时,将丢弃与密钥相关联的任何先前生存时间。 对于上述这里的 key和val…...

【学习FreeRTOS】第18章——FreeRTOS软件定时器
1.软件定时器的简介 定时器:从指定的时刻开始,经过一个指定时间,然后触发一个超时事件,用户可自定义定时器的周期硬件定时器:芯片本身自带的定时器模块,硬件定时器的精度一般很高,每次在定时时…...

C++--两个数组的dp问题(2)
1.交错字符串 力扣(LeetCode)官网 - 全球极客挚爱的技术成长平台 给定三个字符串 s1、s2、s3,请判断 s3 能不能由 s1 和 s2 交织(交错) 组成。 两个字符串 s 和 t 交织 的定义与过程如下,其中每个字符串都…...
利用人工智能彻底改变库存管理:综合指南
通过本指南了解人工智能如何增强库存管理,为希望简化运营的管理者和企业主提供帮助。 库存管理是任何销售实物产品的企业的重要组成部分。它包括跟踪库存水平,预测未来需求,并确保始终有足够的产品来满足客户需求,但又不会因库存过多而浪费金钱。有效的库存管理可以显着降…...

连接器信号完整性仿真教程 七
本将介绍微带线及差分微带线仿真。做连接器信号完整性仿真时,有时后没法将激励端口直接设置到连接器端子上,这就需画出连接器PCB PAD,将激励端口设置在PAD的端面上,或者用引线连接PAD,将引线引出到适当的位置ÿ…...

Wireshark数据抓包分析之UDP协议
一、实验目的: 通过使用wireshark对UDP数据包的抓取分析UDP协议的内容 二、预备知识: UDP协议的概念:UDP使用底层的互联网协议来传送报文,同IP一样提供不可靠的无连接传输服务。它也不提供报文到达确认、排序及流量控制等功能。 …...

Java小游戏
一、需求 二、思路一 HP当然是怪物的一个属性成员,而武器是角色的一个属性成员,类型可以使字符串,用于描述目前角色所装备的武器。角色类有一个攻击方法,以被攻击怪物为参数,当实施一次攻击时,攻击方法被调…...

服务器Linux系统配置mysql数据库主从自动备份
服务器Linux系统配置mysql数据库主从自动备份 当数据内容越来越多的时候,数据库也变得越来越大了。如果不小心误删了,或者被黑主机了,那就什么都没有了。所以数据库的数据怎么能让它不丢失做到万无一失变得尤为重要! 我是艾西&a…...
Java通过PowerMockito和Mokito进行单元测试
PowerMockito和Mokito的概念 PowerMockito和Mockito都是Java语言中的测试框架,用于进行单元测试和集成测试。它们中的每一个都有不同的功能和应用。 Mockito是一个基于模拟的测试框架。它允许你模拟对象,在测试中隔离被测代码的依赖项。使用Mockito&am…...

数字化技术无限延伸,VR全景点亮智慧生活
随着互联网的发展,我们无时无刻不再享受着互联网给我们带来的便利,数字化生活正在无限延伸,各行各业也开始积极布局智能生活。要说智慧生活哪个方面应用的比较多,那应该就是VR全景了,目前VR全景已经被各个行业广泛应用…...

抖音艺术签名小程序源码/艺术签名设计小程序源码/字节跳动小程序开发
最近很火的抖音艺术签名小程序源码,这是一款艺术签名设计小程序源码,字节跳动小程序开发,之适用于字节系小程序。介意请绕过! 下载地址:https://bbs.csdn.net/topics/616145725...

养号自动化,指纹浏览器和RPA机器人解除烦恼
在这个充满科技魔力的时代,社交媒体已经成为人们生活的一部分,而Facebook更是我们分享欢乐、联络亲友的重要平台。然而,随之而来的是一个棘手的问题:如何保持账号的活跃度,而又不被沉重的养号工作压垮?别担…...

ES6中promise的使用
ES6中promise的使用 本文目录 ES6中promise的使用基础介绍箭头函数function函数状态 原型方法Promise.prototype.then()Promise.prototype.catch() 静态方法Promise.all()Promise.race()Promise.any() 链式回调 基础介绍 官网:https://promisesaplus.com/ window.…...

前端如何走通后端接口
0 写在前面 现在基本都是前后端分离的项目了,那么前端小伙伴如何获取后端小伙伴接口呢? 1 条件 同一WiFi下,让后端小伙伴分享出自己的ip地址: 步骤1:winr调出运行界面 步骤2:cmd调出命令行窗口 步骤3:…...

iOS swift5 扫描二维码
文章目录 1.生成二维码图片2.扫描二维码(含上下扫描动画)2.1 记得在info.plist中添加相机权限描述 1.生成二维码图片 import UIKit import CoreImagefunc generateQRCode(from string: String) -> UIImage? {let data string.data(using: String.En…...

【马拉车算法/动态规划】最长回文字串
最长回文字串 1.问题描述2.中心扩展法(O(N^2))3.动态规划4.Manacher(马拉车算法) 1.问题描述 常用有3种算法:中心扩展法、动态规划和Manacher算法 2.中心扩展法(O(N^2)) 解释: 从中心向外扩展。 分为两种…...
什么是 fail-fast? 什么是fail-safe?
面试回答 在系统设计中,快速失效(fail-fast)系统一种可以立即报告任何可能表明故障的情况的系统。快速失效系统通常设计用于停止正常操作,而不是试图继续可能存在缺陷的过程。 其实,这是一种理念,说白了就是…...

第三届计算机、物联网与控制工程国际学术会议(CITCE 2023)
第三届计算机、物联网与控制工程国际学术会议(CITCE 2023) The 3rd International Conference on Computer, Internet of Things and Control Engineering(CITCE 2023) 第三届计算机、物联网与控制工程国际学术会议(CITCE 2023)…...
react antd 日期选择 WeekPicker MonthPicker 取值转为起止日期
默认WeekPicker 取值,返回的是2023年34周,这样后台用起来不方便。可以转化成指定周的起止日期 const startDate moment(weekData).day(1).format(YYYY-MM-DD); // 周一日期 const endDate moment(weekData).day(7).format(YYYY-MM-DD); // 周日日期同…...
Qt Widget类解析与代码注释
#include "widget.h" #include "ui_widget.h"Widget::Widget(QWidget *parent): QWidget(parent), ui(new Ui::Widget) {ui->setupUi(this); }Widget::~Widget() {delete ui; }//解释这串代码,写上注释 当然可以!这段代码是 Qt …...
AI编程--插件对比分析:CodeRider、GitHub Copilot及其他
AI编程插件对比分析:CodeRider、GitHub Copilot及其他 随着人工智能技术的快速发展,AI编程插件已成为提升开发者生产力的重要工具。CodeRider和GitHub Copilot作为市场上的领先者,分别以其独特的特性和生态系统吸引了大量开发者。本文将从功…...
【碎碎念】宝可梦 Mesh GO : 基于MESH网络的口袋妖怪 宝可梦GO游戏自组网系统
目录 游戏说明《宝可梦 Mesh GO》 —— 局域宝可梦探索Pokmon GO 类游戏核心理念应用场景Mesh 特性 宝可梦玩法融合设计游戏构想要素1. 地图探索(基于物理空间 广播范围)2. 野生宝可梦生成与广播3. 对战系统4. 道具与通信5. 延伸玩法 安全性设计 技术选…...

解析奥地利 XARION激光超声检测系统:无膜光学麦克风 + 无耦合剂的技术协同优势及多元应用
在工业制造领域,无损检测(NDT)的精度与效率直接影响产品质量与生产安全。奥地利 XARION开发的激光超声精密检测系统,以非接触式光学麦克风技术为核心,打破传统检测瓶颈,为半导体、航空航天、汽车制造等行业提供了高灵敏…...
多元隐函数 偏导公式
我们来推导隐函数 z z ( x , y ) z z(x, y) zz(x,y) 的偏导公式,给定一个隐函数关系: F ( x , y , z ( x , y ) ) 0 F(x, y, z(x, y)) 0 F(x,y,z(x,y))0 🧠 目标: 求 ∂ z ∂ x \frac{\partial z}{\partial x} ∂x∂z、 …...
用递归算法解锁「子集」问题 —— LeetCode 78题解析
文章目录 一、题目介绍二、递归思路详解:从决策树开始理解三、解法一:二叉决策树 DFS四、解法二:组合式回溯写法(推荐)五、解法对比 递归算法是编程中一种非常强大且常见的思想,它能够优雅地解决很多复杂的…...
boost::filesystem::path文件路径使用详解和示例
boost::filesystem::path 是 Boost 库中用于跨平台操作文件路径的类,封装了路径的拼接、分割、提取、判断等常用功能。下面是对它的使用详解,包括常用接口与完整示例。 1. 引入头文件与命名空间 #include <boost/filesystem.hpp> namespace fs b…...

【工具教程】多个条形码识别用条码内容对图片重命名,批量PDF条形码识别后用条码内容批量改名,使用教程及注意事项
一、条形码识别改名使用教程 打开软件并选择处理模式:打开软件后,根据要处理的文件类型,选择 “图片识别模式” 或 “PDF 识别模式”。如果是处理包含条形码的 PDF 文件,就选择 “PDF 识别模式”;若是处理图片文件&…...

Python异步编程:深入理解协程的原理与实践指南
💝💝💝欢迎莅临我的博客,很高兴能够在这里和您见面!希望您在这里可以感受到一份轻松愉快的氛围,不仅可以获得有趣的内容和知识,也可以畅所欲言、分享您的想法和见解。 持续学习,不断…...

基于谷歌ADK的 智能产品推荐系统(2): 模块功能详解
在我的上一篇博客:基于谷歌ADK的 智能产品推荐系统(1): 功能简介-CSDN博客 中我们介绍了个性化购物 Agent 项目,该项目展示了一个强大的框架,旨在模拟和实现在线购物环境中的智能导购。它不仅仅是一个简单的聊天机器人,更是一个集…...